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We partition the time-line in differentways,for example,into minutes,hours,days,etc.

Whenreasoningaboutrelationsbetweeneventsand processeswe often reasonabouttheir

locationwithin suchpartitions. For example, � happenedyesterdayand � happenedtoday,

consequently� and � aredisjoint. Reasoningaboutthesetemporalgranularitiesso far has

focussedon temporalunits (relationsbetweenminute,hourslots). I shallarguein this paper

thatin ourrepresentationsandreasoningproceduresweneedinto accountthateventsandpro-

cessesoftenlie skew to thecellsof ourpartitions(For example,‘happenedyesterday’doesnot

meanthat � startedat 12 a. m. andended0 p. m.) This hastheconsequencethatourdescrip-

tionsof temporallocationof eventsandprocessesareoftenapproximateandroughin nature

ratherthanexactandcrisp. In thispaperI describerepresentationandreasoningmethodsthat

take theapproximatecharacterof ourdescriptionsandtheresultinglimits (granularity)of our

knowledgeexplicitly into account.

Keywords: ApproximateReasoning,QualitativeReasoning,TemporalRelations,Granularity,

Ontology

1. Introduction

Formal systemsthat supportreasoningaboutcalendarunits and clock units are

calledtemporalgranularities[3]. Suchsystemshave beenthe subjectof intensive re-

searchin recentyears,e.g.,[2,27,12]. Thesesystemsprovide foundationsfor taskand

processmanagement[19,13,18],for work ondatabasesystems[20], on (geographic)in-

formationsystems[23], andthey arerelevantalsoin many otherdomains.Essentially,

temporalgranularitiesdescribewaysof partitioningthe time-lineandmethodsfor rea-

soningaboutcells within the partitionswhich result. Examplesof partitionsare: the

partition of the time-line into fifteen minuteslotsproducedby your favorite calendar

application,or thepartitionof the time-linecreatedby thesuccessionof updateopera-

tionsof somedata-basesystem.Partitionsof thetime-linecanberough. Consider, for

example,thepartition with cells labeled‘before World War 2’, ‘during World War 2’,
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‘after World War 2’. (In what follows I usethe termscalendar-partition, db-partition,

andWW2-partitionin orderto referto theseexamples.)

A critical assumptionunderlyingmostformalsystemsdealingwith temporalgran-

ularitiesis thattheboundaries(beginningsandendings)of theeventsandprocesseswe

want to representaremadeto coincidewith theboundariesbetweenthepartitioncells

within therepresentation.For example,if weplanameetingwithin thepartitioncreated

by ourcalendarapplication,thenthebeginningandendingof themeetingmustcoincide

with thebeginningandendingof theavailablefifteenminuteslots. I shallarguebelow

that this assumptionmasksa deep-runningproblem,which cannotbe resolved merely

by choosinga finer resolution(e.g.,five minuteslots).Rather, onemustgive up theas-

sumptionthatboundariesof eventsor processesneedto coincidewith theboundariesof

partitioncells1. This resultsin approximateratherthanexactrepresentationsof thetem-

poral locationsof eventsandprocesses.In this paperI will presentformal methodsfor

theapproximaterepresentationof eventsandprocesseswith respectto partitionsof the

time-line. I alsopresentformal meansto derive relationsbetweeneventsandprocesses

capturedin approximaterepresentations.

Thepaperis structuredasfollows. It startswith a discussionof relationshipsbe-

tweeneventsandprocessesandpartitionsof the time-line. In Section3 qualitative re-

lationsbetweentemporalregionsaredefined. Theserelationsare thengeneralizedto

relationsbetweenapproximationsof eventsandprocesseswith respectto anunderlying

partition in Sections4-8. In Section9 therelationshipsbetweenthenotionsof approx-

imationandgranularitywill bediscussedaswell aslimits andpotentialapplicationsof

theproposedformalism.

2. Reference and approximation

Partitionsof the time-line areusedboth as framesof referenceandas the basis

for approximations.In orderto understandtherelationshipsbetweenthesetwo useswe

needto understandtherelationshipsbetweeneventsandprocesseson theonehandand

ourpartitionsof thetime-lineon theother.

2.1. Temporal granularities

Temporalgranularitiesdescribeways of partitioning the time-line and ways in

whichsuchpartitionscanbeusedasframesof reference.Examplesof partitionsdealing�
Similar pointsweremade,for example,in [17] and[11] from a differentperspective.
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asframesof referencearethecalendar-partition,thedb-partition,andtheWW2-partition

mentionedabove. We usethemin expressionslike ‘We will meeton Mondaymorning

at 8 a.m.’ or ‘The meetingwill take onehour’, or ‘Therearewereseveralchangessince

thelastupdate’,or ‘Berlin wastheculturalcenterof EuropebetweentheWorld Wars’.

The time-line,
�����	��
�

, itself is conceived as the totally orderedclassof time

points,i.e., theclassof all possibleboundariesof temporalregions,forming a directed

one-dimensionalspace[33,25]. Usually it is assumedthat the time-line is isomorphic

to the real numbers,reflectingthe intuition that boundariescanbe locatedanywhere.

Given the point-basedview of the time-line, temporalintervals (topologically simple

one-dimensionalregions)canberepresentedby orderedpairsof boundarypoints[24].

Temporalintervals, in general,are suchthat eachinterval hasproperparts. In those

domainsthereareno atomictemporalintervals.

A partition of the time-line is a set of time intervals (cells) that do not overlap

but sumto thewhole time-line. In oppositionto the time-line itself, partitioncellsare

countable,and so humanbeingscan namethem. One way of namingthem consists

in assigninginteger numbersto them in sucha way that the orderingof the integers

correspondsto the orderingof the underlyingtime-line: for example,your computer

internally countsthe secondsthat have passedby sinceJanuary1st 1970 in order to

give you thetime. Partitionshave differentgranularitiesandthey canbehierarchically

organizedin virtueof thefactthatsomepartitionsincludeothers.Thisoccurswhenever

thecellsof afinerpartitionsubsumethecellsof partitionsatacoarserlevel. Forexample,

afifteenminuteslot in yourcalendarmightbesubsumedby threefiveminuteslots.(For

a detaileddiscussionsee[41].) Every partitionhasminimal cells, i.e., cells thatdo not

have (proper)subcells.For exampleminimal cells in your calendarmaybefive minute

slots. This, however, doesnot meanthat theredo not exist eventsthatareshorterthan

fiveminutes.Thisdoesonly meanthatyourcalendar‘doesnotcare’aboutthoseevents.

Theseintuitions about the time-line and its partitions were formalized in the

granularity-modelproposedin [3]. Moreover, thismodeltakesspecialkindsof partitions

into account,includingpartitionswith holesor gaps,partitionsdeterminedby attributes

suchasworkingdays,holidays,andsoon,andpartitionswith cellsof differentsizes.

2.2. Occurrentsandpartitions

In this paperwe considereventsandprocessessuchas‘Your meetingwith your

bosson Mondaymorningfrom 8 a.m. to 9 a.m. in heroffice’, ‘My childhood’,‘World

War 2’, ‘AAAI-2000’. Following [38] I call suchspatio-temporalobjectsoccurrents.
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Every event or process,� , is locatedat a region of time, � , boundedby the beginning

andtheendof its existence,i.e., ����� � � � . Occurrentshave temporalparts,which are

occurrentsthemselves,andwhich arelocatedat partsof the temporalregionsat which

theirwholesarelocated.

Considernow occurrentsandtheir temporallocationwith respectto partitionsof

thetime-line.This relationshipcanbedescribedin termsof relationsbetweentheexact

temporalregion of a givenoccurrent,� � � � , andthecellsof thecorrespondingpartition.

For example,we candescribethe temporallocationof your meetingwith your boss,

relative to the above-mentionedpartition of the time-line into fifteen minuteslots,by

sayingthat the temporallocationof this occurrent,� � � � , is identicalto the sumof the

four consecutive cellsbetween8 a.m.and9 a.m.

Considerour threeexamplepartitions:calendar-partition,db-partition,andWW2-

partition. For eachof thesepartitionswe have a numberof occurrentswhosetemporal

locations, � � � � , canbe exactly representedwith respectto oneof thesepartitions(As

in thecaseof your meetingwith your boss).Exactrepresentationin this context means

that theboundariesof theseeventscoincidewith boundariesof correspondingpartition

cells. More precisely, we cansaythat the temporallocation, � � � � , of suchoccurrents

is identical to somemereologicalsum of partition cells. The majority of occurrents,

however, cannotbe representedexactly with respectto partitionsin this way. This is

becausetheir beginningsandendingsdo not coincidewith thebeginningsandendings

of partition cells. Consider, for example,the locationof the beginning of the German

carnival seasonwhichoccurseveryyearonNovember11that11o’clock and11minutes.

Thisboundaryliesskew to theboundariesof thetime-slotsof yourcalendardividedinto

15-minuteslotsthatstartat eachfull hour. Consequently, the locationof theoccurrent

‘Carnival season2001’ cannotbe representedexactly with respectto the partitionsof

suchcalendars.Onecaneasilyseethatmostoccurrentsandmostpartitionsstandin this

kind of relationship.This is becausemosteventsandprocessesoccurindependentlyof

ourpartitioningactivity. (This holds,too,of mostmeetingswith yourboss.)

We have two ways of dealingwith this issue: (1) Whenever we want to usea

partitionasa frameof referencewe canconstructanadhocpartitionof sucha sortthat

theoccurrentswe refer to arelocatedexactly at somecorrespondingsumsof partition

cells. This canbeachieved,for example,by choosingpartitionswhich aresuchthatthe

occurrentsof interestarepartsof the partition, e.g., ‘before the occurrentof interest’,

‘during the occurrentof interest’, ‘after the occurrentof interest’,etc 2. Anotherway�
More complex formsof partitionsof this sortareoftenusedin GeographicInformationSystems.Parti-
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is to refinepartitionsuntil theoccurrentsof interestcanberepresentedexactly, e.g.,by

switchingfrom hoursto minutes,from secondsto nano-seconds,andsoon. Or (2) we

useanapproximationtheoreticapproachanddescribetemporallocationandextension

approximatelyratherthanexactly. For example,wesaythattheGermancarnival season

beginsat sometime between11 a.m.and11.15a.m.,i.e., that it occupiesonly a partof

thecorrespondingtimeslot.

Obviously (1) is preferable.Unfortunatelyit is notalwayspossibleto constructor

to usepartitionsin thatsense:(a)An importantadvantageof theuseof familiarcalendar-

like partitionsasframesof referenceis thatsuchpartitionsdo not change andthat they

canbere-usedin differentcontexts involving in independenteventsandprocesseswhich

may needto be synchronized.Framesof referenceare,by definition, relatively stable

over time. Constructingpartitionson the fly asoccurrentsoccuris thusinappropriate.

(b) It is oftennotpossibleto refinepartitionsasneeded;ourmeasuringinstrumentshave

only afinite resolution.(c) Oftenwedonotknowwhencertaineventsexactlyoccur;for

example,I know thatmy bosscameto talk to me duringmy lunch break,but I do not

know exactlywhenshearrivedor whensheleft.

Assumingtherelative stability of thesortsof partitionsof thetime-linewe useas

framesof reference,we candistinguishtwo different classesof occurrentsaccording

to thewaysthey behave with respectto suchstablepartitions:bonafide occurrentson

theonehand,andfiat occurrents,on theother. Consideragainyour meetingwith your

boss.It wasscheduledfor Mondaymorningandhadacorresponding,neatentryin your

calendar. Theplannedmeetingstartsandendsin exactlythewayin whichit is enteredin

your calendar. Theactualmeeting,on theotherhand,startsat a time whichdependson

whenpeopleactuallyshow up andwhenthebossdecidesto endit. It is very important

to noticethatwe have two distinctoccurrentshere:(1) theoccurrent‘Plannedmeeting

with the boss’ that is at homein the realm of calendarsandschedulingapplications,

and(2) theactualmeetinginvolving actualpeopleandtheiractivitiesof drinkingcoffee,

standingabout,rolling theireyes,etc.

The plannedmeetingis a fiat occurrent. This meansthat it is definedby its fiat

boundaries,which are the result of humanconceptualization[39,40]. Humanbeings

have completecontrolover thetemporallocationof suchfiat occurrents;they can,pro-

vided they act early enough,postponeandcancelthemat will. In particularsuchfiat

occurrentscanbescheduledin suchawaythattheirboundariescoincidewith thebound-

tions arerefinedin stepwisefashionby addingmoreandmoreoccurrents.If two objectsoverlap,then

their overlapformsa separatecell. This processof constructinga partition is calledspatialenforcement

[31].
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ariesof cellsof somepartitionof thetime-line3: theplannedmeetingstartsexactlyat8

a.m.andendsexactlyat9 a.m.

Theactualmeeting,in contrast,is abonafideoccurrent. Thismeansthatit existsto

a significantdegreeindependentlyof humanconceptualization[39,40]. This occurrent

involvespeopleandtheiractions.Youcangetfiredduringameeting,youcanarrive too

latefor ameeting,or youmayhave to leave it early.

Noticethatthedistinctionbetweenbonafideandfiat occurrentsdoesnotimply that

all fiatscoincidewith theboundariesof our partitionsandthatall bonafide occurrents

lie skew to them. Oftenbonafide occurrentsarethemselvescellsof our partitions(for

examplein caseof the WW2-partition). On the other handthereare fiat occurrents

that lie skew to the boundariesof our partitions,for example, the fiat occurrent‘the

secondfive minutesof theplannedmeetingwith theboss’lies skew to theboundaries

of your calendarpartition which consistsof fifteen minuteslots. The point is that in

the fiat domainwe often have the freedomto placeoccurrentsnicely sincewe are in

charge of creatingandplacing them(as in the caseof a plannedmeeting). We often

canadjustthe fiat occurrentsto our referencepartitions. On the otherhandwe often

adjustor createour partitionswith respectto bonafide occurrentsif we areableto do

so(asin thecaseof theWW2-partition). Otherwisewe representbonafide occurrents

approximatelyby describingtheir relations(e.g.,full overlapor partial overlap)to the

cellsof somereferencepartition.

Goingdeeperinto thetheoryof bonafideandfiat occurrentsgoesbeyondthescope

of this paper. See[39,40]4 for details. The importantpoint however is that the two

kinds of occurrentsbehave differently with respectto thosepartitionsof the time-line

which we humanbeingsconstruct. Fiat occurrentscan be scheduledin sucha way

that they canberepresentedexactly, i.e., their boundariescanbeplacedin sucha way

that they coincidewith thecell boundariesof theappropriatepartitionof thetime-line.

(Think of the way you plan your meetings.)Bonafide occurrents,on the otherhand,

behavedifferently, sincethey areindependentof ourhumanconceptualization. They are

affectedby climateandthemoodof theparticipants,by thepunctualityof thetransport�
Fiat occurrentscanof coursebescheduledalsoin sucha way that their boundariesdo not coincidewith

regularpartitionsof thetime-lineasin thecaseof thecarnival seasonor in thecaseof raceswhich begin

with theshootingof thestartingpistole.�
Smith’s theoryof bonafide andfiat objectsshows that the formerly contrarypositionsof realismand

idealismcanbecombinedonthebasisof theview thatmany entitiesin realityenjoy independentexistence

but have boundarieswhich dependon our humandemarcations.In this context his work representsa

continuationof thatof Brentano,Husserl,andIngarden.
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system,andby other, internalandexternalfactorsnot underour control. That is why

they usuallydonotexactly fit into ourpartitions.

In orderto establisha relationshipbetweenbonafide occurrentsandcalendarpar-

titionsweneedto dealwith approximationsof thetemporallocationsof bonafideoccur-

rents,ratherthantheir exact locations(which may in any casenot becapableof being

exactly determined).This providesthemotivation for extendingthegranularitymodel

proposedby [3] to take approximationsinto account.

2.3. Approximation

In this sectionI show thattheview of partitionsasframesof referenceis a special

caseof approximation.In theremainderof thepaperI thenconcentrateon thenotionof

approximation.

2.3.1.Roughapproximations

The notion of approximationis basedon the definition of an indiscernibility re-

lation with respectto a partition of somedomain. Roughset theory[35] providesthe

formal foundations.Roughapproximationis basedon approximatingsubsetsof a set

whenthesetis equippedwith anequivalencerelationthatpartitionsthesetasa whole

into equivalenceclasses.Givena set � with a partition ���������! #"�$&%�' , anarbitrary

subset(*)+� canbeapproximatedby a function ,.-�/0%+12� fo � po
�
no ' . Thevalueof,.- � " � is definedto be fo if � � )�( , it is no if � �43 (5�76 , andotherwisethe value is

po. Intuitively fo, po andno areinterpretedas‘full overlap’, ‘partial overlap’ and‘no

overlap’.

Usingthenotionof approximationwe thencandefineanequivalence(indiscerni-

bility) relation in the domainof subsetsof � : � � (8)9� /:�<;=(?>@,.AB�@,.- . The

approximationof a subset( is exact if andonly if ( is identicalto a unionof elements���C$D� of partitionelements.Formallywe canwrite:

exact
� ,.- � >FEG":/H,.- � " � $B� fo � no '

Otherwisetheapproximationis calledrough. In theexactcasetheequivalenceclass IJ(LK
containsasingleelement.

Thereis obviously a relationbetweenthegranularity(resolution)of a givenparti-

tion andthenumberof setswe canrepresentexactly andthe‘roughness’of theapprox-

imationof theothersets.Thiswill bediscussedin Section9.
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2.3.2.Approximationandtemporal granularities

In [9] and[43] the techniqueof approximationof subsetsof a setwasappliedto

regionsof spaceby interpretingthe threevaluesfo, po, andno asdifferentdegreeof

spatialoverlap. On the spatialinterpretationthesevaluesmeasurethe extent to which

a region ( overlapswith thecellsof thepartitionof a spatialregion � . In this paperI

considertheapproximationof regionsin thetemporaldomainwith theobviousinterpre-

tationof fo, po, andno in aone-dimensionalspace.

Partitionsof thetime-linewerehitherousedmainlyto provideaframeof reference

with respectto which temporallocationandextensionweredescribed.Fromthepoint

of view of approximationsthe time-granularitiesusedin [3] are approximationsthat

areexact in the sensethat occurrentshave a temporallocation that is identical to the

mereologicalsumof correspondingpartitioncells,i.e., EM":/H,.- � " � $8� fo � no ' .
Giventheexactnessof theapproximations,, A and ,4- , onecaneasilyderive qual-

itative relationsbetweenthe(non-empty)intervals � and ( (assumingfo N no):EG":/�,.A � " � �O,.- � " � implies equal
� � � ( �EG"/�,.- � " � � fo 1P,.A � " � � fo and QH":/�,.A � " ��R�O,.- � " � implies contains
� � � ( �EG"/�,.- � " � � fo 1P, A � " � � fo and QH":/�, A � " ��R�O,.- � " � implies containedBy

� ( � � �EG"/ � ,4A � " ��R� no or ,.- � " ��R� no
� 1S,.A � " ��R�O,.- � " � implies disjoint

� � � ( �QH" �UTV�LW /H,.A � " � �O,.- � " � � fo and,4A �XT�� NF,.- �XT�� and ,4A �YWZ�\[ ,.- �YWZ� implies partially overlap
� � � ( �

Thesefollow immediatelyfrom the definitions. As alreadymentioned,thingsbecome

more complicatedwhen multiple framesof referenceare involved [3]. In this paper

I concentrateon a single frameof referenceandI considerthe derivation of relations

betweentemporalregionsgiventheir roughapproximation.

3. Qualitative relations between regions

In this section I define qualitative relationsbetweenone-dimensionalregions.

Thesedefinitionsarebasedexclusively on themeetoperationandprovide thebasisfor

thedefinitionof correspondingrelationsbetweenapproximationslateron in this paper.

The meetoperationis interpretedasthe overlapof regions. Two regionshave a non-

emptymeet
�^]`_DaFR�cb � if andonly if they shareparts(or interior pointsin point-set

topologicalterms).It is importantto stressthat thesameor similar relationshave been

definedalsoelsewhere,e.g.,[1,21,36,24,15].I usethenotationof RCCfrom theregion
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connectioncalculusin orderto stressthecorrespondencebetweentherelationsdefined

in this paperandrelationsdefinedby Cohnandhis co-workers.Correspondencein this

context meansthat I amtalking aboutregularregionsthatsatisfytheRCC-axioms[36]

andthatsimilar relationscouldbedefinedor have beendefinedin termsof RCC,e.g.,

[36,16,15].I usesub-andsuperscripts(e.g.,RCC d e ) wherethesuperscriptrefersto the

numberof relationsin the denotedsetandthesubscriptrefersto the dimensionof the

regionsandtheembeddingspace.

Thecontribution of this sectionis thespecificstyleof definition thatallows us to

generalizerelationsbetweentemporalregions to relationsbetweenapproximationsof

temporalregions. This methodologywasoriginally proposedin [8] for the definition

of relationsbetweenapproximationsof spatialregions. The usageof the outcomeof

themeetoperation(
]`_fa �gb ,

]`_Da � ] ,
]`_fa � a ) in orderto definerelationsis

somewhatsimilarto thetechniqueEgenhoferusedin hisintersectionmatrices(
]h_Ca �Ob

and
]*_&aiR�Ob ), e.g.,[21].

3.1. Boundaryinsensitiverelations

3.1.1.RCC5relations

Giventwo regions
]

and
a
, eachboundaryinsensitive topologicalrelation(RCC5

relation)betweenthemcanbedeterminedby consideringthefollowing triple of Boolean

truth values[8]: �^]j_`a8R�Ob �C]j_`a � ]4�:]j_`a � ak�ml
The correspondencebetweensuchtriples and boundaryinsensitive relationsbetween

regionson anundirectedline is givenin thetablein Figure1 [8].nporqjstvu nporq t n nporq t q RCC5

F F F DR
T F F PO

T T F PP
T F T PPi

T T T EQ

PP(x,y)

PPi(x,y) EQ(x,y)PO(x,y)DR(x,y)

proper part(y,x) equalpartial overlapdisjoint

Figure 1. Definition of the RCC5 relationsand the correspondingRCC5 lattice. (The bold boundary

encloses� andthedashedboundaryencloses� .)
As a set the relationsdefinedin the table in Figure1 are jointly exhaustive and
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pair-wisedisjoint (JEPD).Thesetof triplesis partiallyorderedby setting
� � e � �Hw � ��x �\�� ( e � (mw � (yx � if f � � � ( � for "!�{z �L|H�L} , wheretheBooleanvaluesareorderedby F

[
T.

The resultingorderingis indicatedby thearrows in the right partof Figure1. [8] call

this graphtheRCC5lattice in orderto distinguishit from theconceptualneighborhood

graphgivenin [26].

3.1.2.RCC d e relationsbetweenintervals

Intervals are topologically maximally connectedone-dimensionalregions. The

boundaryinsensitive topologicalrelationbetweenintervals
]

and
a

on a directedline

(RCC d e relations)canbedeterminedby consideringthetriple:�^]j_&aiR;Ob �C]*_`a ; ]4�]*_`a ; aZ�
wheretheevaluationof eachcomponentyieldsavaluebelongingto theset � FLO

�
FLI
�
T
�

FRI
�
FRO ' asfollows:

]*_&aiR;Ob~� ���� ��� FLO if
]*_5a �Ob and

]&��a
FRO if

]*_5a �Ob and
]&��a

T if
]*_5aBR�Ob

and

]*_`a ; ] �
��������� ��������
FLO if

]*_`a8R� ] and
]*_`a8R� a and

]&��a
FRO if

]*_`a8R� ] and
]*_`a8R� a and

]&��a
FLI if

]*_`a8R� ] and
]*_`a � a and

]&��a
FRI if

]*_`a8R� ] and
]*_`a � a and

]&��a
T if

]*_`a � ]
and

]*_&a ; a �
��������� ��������
FLO if

]j_`aiR� a and
]j_`a8R� ] and

]&��a
FRO if

]j_`aiR� a and
]j_`a8R� ] and

]&��a
FLI if

]j_`aiR� a and
]j_`a � ] and

aj��]
FRI if

]j_`aiR� a and
]j_`a � ] and

aj��]
T if

]j_`a � a
with ]&��a ���\� if � �^]h�h_ � �^aZ� ��� �^]�� and� �^]���_ � �^ak��R��� �^aZ��

otherwise]&��a � �\� if � �^]��h_ � �^aZ� ��� �^]h� and� �^]��4_ � �^ak��R�+� �^ak��
otherwise
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� �^]�� ( � �^aZ� ) is theone-dimensionalregion occupying thewholeline to theleft (right)5

of
]
. Theintuition behind

]�_&a ; ] � FLO (
]�_&a ; ] � FRO) is that

]�_&a � ] is

falsebecausetherearepartsof
]

stickingout to theleft (right) of
a

andbecause
a

is not

a partof
]
. Theintuition behind

]*_?a ; a � FLI (
]*_`a ; a � FRI) is that

]�_`a � a
is falsebecausetherearepartsof

a
stickingout to the right (left)

]
andbecause

]
is a

partof
a
.

Thetriplesformally describejointly exhaustive relationsundertheassumptionthat]
and

a
areintervals in aone-dimensionaldirectedspace.Thecorrespondencebetween

thetriplesandtheboundaryinsensitive relationsbetweenintervals is given in thetable

below. Possiblegeometricinterpretationsof thedefinedrelationsaregivenin Figure2.nporq�s� u nporq � n n�orq � q RCC � �
FLO FLO FLO DRL

FRO FRO FRO DRR
T FLO FLO POL

T FRO FRO POR

T T FLI PPL
T T FRI PPR

T FLI T PPiL
T FRI T PPiR

T T T EQ

For example: therelationDRL
�^]4��aZ�

holdsif andonly if
]

and
a

do not overlapand
]

is to the left of
a
; POL

�^]4��aZ�
holdsif andonly if

]
and

a
partly overlapandthe non-

overlappingpartsof
]

areto theleft of
a
; PPL

�^].��ak�
holdsif andonly if

]
is contained

in
a

but
]

doesnot cover the rightmostpartsof
a
; PPiL

�^].��ak�
holdsif andonly if

a
is

a partof
]

andtherearepartsof
]

stickingout to the left of
a
; PPR

�^]4��aZ�
holdsif and

only if
]

is a partof
a

and
]

doesnot cover theleftmostpartsof
a
; PPiR

�^]4��aZ�
holdsif

andonly if
a

is apartof
]

andtherearepartsof
]

stickingout to theright of
a
.

In qualitative reasoningthe aim is to definesetsof jointly exhaustive and pair-

wisedisjoint (JEPD)relations.For JEPDsetsof relationsfor arbitraryconfigurationsof

objectsor regionsoneandonly onerelationholdsto betrue.Thesetof RCC d e relations

is jointly exhaustive for intervals, i.e., arbitraryconfigurationsof intervals arecovered.

But considerthe geometricinterpretationsof PPL
�^]4��aZ�

and PPR
�^].��ak�

in Figure 2.

Bothrelationshold if
]

is apartof
a

andtheboundariesof
]

and
a

do not intersect.We�
I usethe spatialmetaphorof a line extendingfrom the left to the right ratherthan the terminologyof

a time-line extendingfrom thepastinto the future in orderto focuson theaspectsof the time-line asa

one-dimensionaldirectedspace.
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have
]\_�a � ] and

]\_�a8R� a and
]&��a

and
]&��a

. Consequentlythetableabovedoes

notdefinepair-wisedisjoint relations.Considerthetwo setsppl ��� �^].��ak�  PPL
�^].��ak� '

andppr ��� �^]4��aZ�  PPR
�^].��ak� ' . SincePPL andPPR arenot identicalandnot pair-

wise disjoint we have ppl
R� ppr andppl

_
ppr

R�7b . The sameholdsfor PPiL and

PPiR.

It is importantto stressthat this propertyof thedefinedrelationsis intendedand

neededin orderto generalizethoserelationsto approximations.Onecouldeasilymake

thesedefinitionsJEPDby setting
]�_�a ; a � FRI if f

]�_�aiR� a and
]�_�a � ] and

aj�]
and

a�R��]
andby setting

]&_�a ; ] � FRI if f
]5_fa�R� ] and

]5_fa � a and
]v�a

and
]<R�Sa

. But this would destroy thesymmetryof therelationswith respectto EQ.

This symmetryis importantin our generalizationbelow. The centralconcernof this

paperis not thedefinitionof JEPDrelationsbetweenregionsbut ratherthediscussionof

setsof relationsthatcanbegeneralizedto relationsbetweenapproximations.

Assumingthe orderingFLO
[

FLI
[

T
[

FRI
[

FRO, and the orderingon

triples asdefinedabove, a lattice is formed,which has
�
FLO

�
FLO

�
FLO

�
asminimal

elementand
�
FRO

�
FRO

�
FRO

�
asmaximalelement.It is calledtheRCC d e latticeand

theorderingis indicatedby thearrows in Figure2.

DRL(x,y)

PPiL(x,y) PPiR(x,y)

POL(x,y) EQ POR(x,y) DRR(x,y)PPL(x,y) PPR(x,y)

Figure2. Possiblegeometricinterpretationsof theRCC � � relations.For DRL � PPLPPiL � PPR � PPiR, and

DRR two exampleconfigurationsaregiven. Onewith andonewithout boundaryintersection.Thesolid

linessignify theinterval � anddashedlinessignify theinterval � .
ConsiderFigure 2. For all relationsexcept POL, POR, and EQ, two distinct

geometricinterpretationsaregiven.Theseconfigurationsdiffer regardingtheemptiness

or non-emptinessof theintersectionof theboundariesof theregionsbut they cannotbe

distinguishedwithin thecurrentformal framework. It is thetaskof furtherrefinementto

distinguishthoseconfigurations.This will resultin definitionsthatdescribethethirteen

Allen-relations[1] whicharebasedexclusively onthemeetoperationbetweentemporal

regions(SeeSection3.2.2.).
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3.1.3.RCC d e relationsandcomplex regions

Oftentemporalregionsarenot intervals,i.e., they consistof multipledisconnected

parts.Imagine,for example,thatJohngrew up in London.Whenhewas20yearsold he

movedto New York andreturned10 yearslaterto Londonwhereheliveduntil hedied.

The temporalregion during which Johnlived in Londonhastwo disconnectedpiece.

ImagineMary movedto LondononeyearafterJohnleft andleft Londonfor goodone

yearbeforeJohncameback.Therearethenpartsof ‘John’s living in London’before(to

theleft of) andafter(to theright of) ‘Mary’s living in London’. Considerconfiguration

(a) in Figure3. Noneof theRCC d e relationsdefinedin theprevious sectionappliesto

this configuration. Both regionsaredisjoint but thereareno partsof
]

‘sticking out’

to the left andright of
a
, i.e.,

] R�¡a
and

] R�¡a
. RCC d e relationsonly incompletely

describeconfigurations(b) and(c) in Figure3. TheRCC d e relationsdefinedabove do

notgeneralizeto complex one-dimensionalregions.

In thedomainof complex one-dimensionalregionstheRCC d e relationsdefinedin

theprevioussectionis thespecificationof relationsbetweentheconvex hull of complex

regions.In ourexampleabovewewouldhavePPiL
�£¢ �V¤Z¥�¦0¥���§¥�¨��©¥ �Lª ��« a ¦0¥��¬�§¥�¨#�§¥ �

andPPiR
�£¢ �V¤k¥�¦#¥���§¥�¨#�§¥ �Lª �#« a ¦0¥��¬�©¥�¨��§¥ � . This interpretationis not necessarily

satisfactory if our aim is towards the definition of JEPDrelationsbetweenarbitrary

one-dimensionalregions. In orderto obtainJEPDrelationsa further refinementof the

RCC d e relationsis needed.

Thedifficult problemof providing a formal theoryof complex intervals goesbe-

yondthescopeof this paper. For definitionsof relationsbetweencomplex intervalssee

[29,30]and[32]. Thesedefinitionsaremuchmorecomplex thanthosesketchedabove.

The focusof this paperis thediscussionof the generalizationof relationsbetweenre-

gionsto relationsbetweenapproximations.ConsequentlyI considerrelationsbetween

temporalregionswithout explicitly distinguishingbetweensimpleandcomplex inter-

vals and to this end I considerconvex hulls of intervals wherenecessary. However I

shallexplicitly markcasesthatonly hold for simpleintervals or only hold for complex

intervals.

x

y

(a)  R(x,y) = ? (b) DRL(x,y) and DRR(x,y) (c) POL(x,y) and POR(x,y)

Figure 3. Configurationsof complex regions that are not or only incompletecharacterizedby the

RCC � � relations.
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3.2. Boundarysensitiverelations

3.2.1.RCC8relations

In orderto describeboundarysensitive relationsbetweenregions
]

and
a

we use

a triple, wherethe threeentriesmay take oneof threetruth-valuesratherthanthe two

Booleanones[8]. Theschemehastheform:�^]*_&aiR>Ob ��]*_`a > ]4��]�_5a > aZ�
where]�_aDR>ObO� ���� ��� T if theinteriorsof

]
and

a
overlap,i.e.,

]�_5aBR�+b
M if only theboundaries

]
and

a
overlap,i.e.,

]*_`a �Ob and ® ]�_ ® aiR�~b
F if thereis nooverlapbetween

]
and

a
, i.e.,

]j_`a �Ob and ® ]j_ ® a �Ob
andwhere6

]�_a > ] �
��������� ��������

T if either
]

and
a

areidenticalor
]

is containedin theinteriorof
a
, i.e.,] � a or

�^]�_5a � ] and ® ]�_ ® a �Ob �
M if

]
is containedin

a
andtheboundariesoverlap" l°¯VlX��]�_5a � ] and

]*_`a8R� a and ® ]j_ ® aBR�Ob
F if

]
is not containedwithin

aM� " l°¯VlX��]�_`a8R� ]
andwhere ]*_`a�±�a � ���� ��� T if

] � a or
�^]�_5a � a and ® ]�_ ® a �~b �

M if
]*_`a � a and

]*_&aiR� ] and ® ]j_ ® aBR�Ob
F if

]*_`a8R� a
The meaningof

]�_8a²R�@b@� T is that the intersectionof the interior of
]

and
a

is

non-emptyandthemeaningof ® ]�_ ® aBR�Ob~� T is thatthemeetof theboundariesof
]

and
a

is non-empty. Thecorrespondencebetweenthetriplesdefinedaboveandboundary

sensitive topologicalrelationsis givenin thetableof Figure4 [8]. [8] defineF
[

M
[

T,

assumetheorderingbetweentriplesdiscussedabove, andcall thecorrespondingHasse

diagram(right partof Figure4) anRCC8lattice.

Considerthedefinitionof therelationDC
�^].��ak�

. By Table4 wehave
]³_*a8R± bO�

F,
]&_8av±{] � F, and

]&_Bav±{a � F. Consequently, neitherthe interiorsnor the

boundariesof
]

and
a

overlap,i.e.,
]�_ra �~b and ® ]�_ ® a �Ob , andtheregions

]
and

a
aredisconnected.In thecaseof EC

�^]4��aZ�
wehave

]³_ja8R± bO� M,
]³_jaj±�] � F, and]³_*a�±�a � F. Consequently, theinteriorsof

]
and

a
donotoverlapbut theboundaries´

In thedomainof regions ��µ � is equivalentto ( �¬¶ � µ&� and �¶ � µ � ) [10].
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F F F DC

M F F EC
T F F PO

T M F TPP

T T F NTPP
T F M TPPi

T F T NTPPi
T T T EQ

PO(x,y) EQ(x,y)NTPP(x,y)DC(x,y) EC(x,y) TPP(x,y)

Figure4. Definition of theRCC8relationsandthecorrespondingRCC8lattice

do, i.e.,
]j_`a �~b and ® ]�_ ® a¸R�~b , andtheregions

]
and

a
areexternallyconnected.

In thecaseof NTPP
�^]4��aZ�

wehave
]³_ja8R± bO� T,

]³_jaj±�] � T and
]¹_jaj±�a � F.

Consequently,
]

is completelycontainedin theinterior of
a
:
]j_`aBR�Ob ,

]�_5a � ] and

since
]r_�aiR� a wehave ® ]�_ ® a �Ob , i.e.,

]
is anon-tangentialproperpartof

a
. In the

caseof EQ
�^].��ak�

we have
]�_�aºR± b�� T,

]�_�af±»] � T and
]�_�a?± a � T. Both

regionsareidentical,i.e.,
]*_`a � ] and

]*_&a � a .
Thispaperdealswith theregionsof aone-dimensionalspaceandwith therelations

betweenthem. In this context themeaningof ® ]&_ ® a�R�9b9� T is that theboundary

pointsof theone-dimensionalregions
]

and
a

coincide.Let ¼�½ bethesetof boundary

pointsof
]

and ¼p¾ bethesetof boundarypointsof
a

respectively7. Wehave ® ]*_ ® aBR�bO� T if andonly if ¼ ½ 3 ¼�¾ R�+¿ . In thiscontext weassumethatif two pointscoincide

thenthey areidentical.

In orderto distinguishsetsof relationsbetweenone-dimensionalregionsfrom re-

lationsbetweenregionsof higherdimensionI usethenotationRCC À e ratherthanRCC8.

Possiblegeometricinterpretationsof theRCC À e relationsaregivenin Figure5.

For all relationsexceptNTPP, NTPPi, andEQ in thisfigure,two distinctgeomet-

ric interpretationsaregiven. ConsidertherelationsDC
�^].��ak�

, Á�Â �^].��ak� , andPO
�^].��ak�

.

Thesegeometricconfigurationsdiffer accordingto whether
]

is to the left of
a

or vice

versa.In thecaseof TPP
�^]4��aZ�

andTPPi
�^].��ak�

we cannotdistinguishwhetherthe left

or the right boundarypoints of
]

and
a

coincide. The configurationscannotbe dis-

tinguishedwithin the currentformal framework. It is the taskof further refinementto

distinguishthem.Ã
Noticethatweareallowedto talk aboutsetsof boundarypointssincein thedomainof one-dimensionalre-

gionstheidentityof boundarypointsis well defined.Moreover theboundarypointsof aone-dimensional

regionarecountable.In thedomainof temporalintervalstheirnumberis two.
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EQ(x,y)TPP(x,y)

TPPi(x,y)

DC(x,y) EC(x,y) PO(x,y)

x y

NTPPi(x,y)

NTPP(x,y)

Figure5. Geometricinterpretationsof RCC Ä � relationsbetweenone-dimensionalregionsof a non-directed

line.

3.2.2.RCC
eUÅe relationsbetweenintervals

Boundaryinsensitive relationsbetweentimeintervalsonadirectedtime-linedonot

distinguishemptinessandnon-emptinessof intersectionat boundarypoints. Boundary

sensitiverelationsbetweenregionsonanon-directedline takeboundaryintersectioninto

accountbut donotdistinguishleft andright. Wenow defineboundarysensitive relations

betweenintervalson adirectedline by combiningbothapproaches.

In order to describeboundarysensitive relationsbetweenintervals on a directed

line (RCC
eUÅe )8 we definethe relationshipbetweenintervals

]
and

a
by usinga triple,

wherethethreeentriesmaytakeoneof ninetruthvalues:FLO, MLO, FLI, MLI, T, MLI,
FLI, MLO, FLO. Theschemehastheform

�^]*_&aiR± b ��]*_`a�±�]4��]�_5a�±�aZ�
where

]*_`a8R± bO�
��������� ��������

T
]j_`aiR>~bO� T

MLO
]j_`aiR>~bO� M and

]j_`a8R;ObO� FLO
MRO

]j_`aiR>~bO� M and
]j_`a8R;ObO� FRO

FLO
]j_`aiR>~bO� F and

]j_`a8R;ObO� FLO
FRO

]j_`aiR>~bO� F and
]j_`a8R;ObO� FROÄ To bedistinguishedfrom RCC15relationsbetweenconcave regionsof higherdimension[15].
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andwhere

]*_`a�±�] �
�������������� �������������

T
]j_`a > ] � T

MLI
]j_`a > ] � M and

]j_5a ; a � FLI
MRI

]j_`a > ] � M and
]j_5a ; a � FRI

FLO
]j_`a > ] � F and

]*_`a ; ] � FLO
FLI

]j_`a > ] � F and
]*_`a ; ] � FLI

FRO
]j_`a > ] � F and

]*_`a ; ] � FRO
FRI

]j_`a > ] � F and
]*_`a ; ] � FRI

andwhere

]*_`a�±�a �
�������������� �������������

T
]*_`a > a � T

MLI
]*_`a > a � M and

]j_`a ; ] � FLI
MRI

]*_`a > a � M and
]j_`a ; ] � FRI

FLO
]*_`a > a � F and

]j_`a ; a � FLO
FLI

]*_`a > a � F and
]j_`a ; a � FLI

FRO
]*_`a > a � F and

]j_`a ; a � FRO
FRI

]*_`a > a � F and
]j_`a ; a � FRI

The intuitions behindthosedefinitionsare the following9:
]f_¸a�R± b�� FLO

meansthat:
]�_Æa8R�Ob is falsebecause

]
is to theleft of

a
andnoboundarypointsof

]
anda

coincide;
]¬_�a8R± bO� MLO meansthat:

]¬_Ça8R�Ob is falsebecause
]

is to theleft of
a

andtheboundarypointsof
]

and
a

docoincide;
]¬_�a*±F] � FLO meansthat:

]¬_�a � ]
is falsebecauseof partsof

]
stickingout to theleft of

a
andbecausenoboundarypoints

of
]

and
a

coincide;
]�_ÈaO±Éa � FLI meansthat:

]�_Èa � a
is falsebecauseof

partsof
a

stickingout to theright
]
, because

]
is a partof

a
, andbecauseno boundary

pointsof
]

and
a

coincide;
]5_fa8±�a � MLI meansthat:

]5_fa � a is falsebecause

of partsof
a

sticking out to the right
]
, andbecause

]
is a partof

a
andtheboundary

pointsof
]

and
a

do coincide. Definitions for
]�_¸a�R± bS$�� FLI

�
MLI

�
FRI

�
MRI ' ,]j_`aj±�] $8� MLO

�
MRO ' , and

]j_5a�±�a $8� MLO
�
MRO ' arenotmeaningful.

Thecorrespondencebetweensuchtriples,boundarysensitive topologicalrelations

betweenintervalsonadirectedline, andthe13relationsdefinedby [1] is givenin Table

6. Possiblegeometricinterpretationsaregiven in Figure7. Consider, for example,the

definitionof the following relations:DCL
�^].��ak�

, i.e., before
�^]4��aZ�

, holdsif
]

and
a

do

not overlapanddo not shareboundarypoints(
]�_?aÈR> b²� F) and

]
is to theleft of

a
(
]Æ_¬aBR;Ob~� FLO), andhence,

]Æ_¬aBR± b~� FLO; ECL
�^].��ak�

, i.e.,meets
�^]4��aZ�

, holdsif� I discusshereonly themostimportantcases.Casesnot explicitly discussedaresimilar.
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and

a
donotoverlapbut doshareboundarypoints(

]!_�aiR>~bO� M) and
]

is to theleft

of
a

(
]r_�a8R;ObO� FLO), andhence,

]r_jaBR>+bO� MLO; TPPL
�^]4��aZ�

, i.e.,starts
�^]4��aZ�

,

holdsif
]

is aproperpartof
a

andthetwo left boundarypointsof
]

and
a

coincide.We

have
]Æ_¬a � ] ,

]Æ_¬aiR� a and ® ]Æ_ ® aBR�Ob , andhence
]Æ_¬a > ] � M and

]Æ_¬a > a � F.

Furthermorewe have
]j_`a ; a � FLI, i.e., therearepartsof

a
stickingout to theright

of
]
. This is consistentwith the coincidenceof the left boundarypointsof

]
and

a
.

Consequentlywe have
]*_5aiR± b~� T,

]�_5a�±�] � MLI, and
]*_5a�±�a � FLI, which

definesthe relationTPPL
�^]4��aZ�

; TPPiL
�^].��ak�

, i.e., starts� �^]4��aZ� , holds if
a

is a proper

part of
]

andthe two left boundarypointsof
]

and
a

coincide. We have
]&_ia � a ,]�_�a8R� ] and ® ]�_ ® a¸R�Ob , andhence

]�_�a > a � M and
]Ç_³a > ] � F. Furthermore

we have
]5_�a ; ] � FLI, i.e., therearepartsof

]
stickingout to theright of

a
. This

is consistentwith thecoincidenceof theleft boundarypointsof
]

and
a
. Consequently

we have
]5_�avR± bÊ� T,

]�_?af±»a � MLI, and
]5_&af±»] � FLI, which definesthe

relationTPPiL
�^]4��aZ�

;

Considerthe relationsNTPPL
�^]4��aZ�

and NTPPR
�^]4��aZ�

, both correspondingto

during
�^].��ak�

. The intuition is that
]

is a properpart of
a

and there is no boundary

intersection. This is consistentwith partsof
a

sticking out to the left of
]

andparts

of
a

sticking out to the right of
]
. Consequently, asa settheRCC

eUÅe relationsarenot

JEPD.Considerthe two setsntppl �7� �^].��ak�  NTPPL
�^]4��aZ� ' andntppr �=� �^]4��aZ�  

NTPPR
�^]4��aZ� ' . We have ntppl � ppr. Consequently, the formal distinctionbetween

NTPPL
�^]4��aZ�

andNTPPR
�^]4��aZ�

doesnot correspondto distinctionsbetweenpairsof

one-dimensionalintervals on a directedline. The sameholds for NTPPiL
�^].��ak�

and

NTPPiR
�^]4��aZ�

. We needthosedistinctionsfor formal reasonsin the generalizationto

approximations.

We defineFLO
[

MLO
[

FLI
[

MLI
[

T
[

MRI
[

FRI
[

MRO
[

FRO
andcall the correspondingHassediagraman RCC

eUÅe lattice to distinguishit from the

conceptualneighborhoodgraph[24]. The orderingof the lower RCC
eUÅe relationsis

indicatedby thearrows in Figure7.

4. Approximations

In thissectionboundaryinsensitive andboundarysensitiveapproximationsof one-

dimensionalregionswith respectto anunderlyingpartitionareformally defined.Bound-

arysensitive approximationstake therelationshipsof theboundaryof theapproximated

region andthe boundariesof partition cells into account.Boundarysensitive approxi-

mationsareneededif wewantto deriveboundarysensitive relationsfrom thoseapprox-
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�ÌË� Allen

FLO FLO FLO DCL before

FRO FRO FRO DCR after

MLO FLO FLO ECL meets

MRO FRO FRO ECR meetsÍ
T FLO FLO POL overlaps

T FRO FRO POR overlapsÍ
T MLI FLI TPPL starts

T MRI FRI TPPR finishes

T T FLI NTPPL during

T T FRI NTPPR during

T FLI MLI TPPiL startsÍ
T FRI MRI TPPiR finishesÍ
T FLI T NTPPiL duringÍ
T FRI T NTPPiR duringÍ
T T T EQ equal

Figure6. Definition of RCC
�Î�� relations.

DCL(x,y) EQ(x,y)

TPPiL(x,y)

TPPL(x,y)ECL(x,y) POL(x,y)

NTPPiL(x,y)

NTPPL(x,y)

Figure7. Geometricinterpretationsof the lower Ï�Ð EQ Ñ RCC
�Î�� relationsbetweenconnectedintervals.

Thesolid linessignify theinterval � anddashedlinessignify theinterval � .
imations.

4.1. Approximatingregions

4.1.1.Boundaryinsensitiveapproximation

Considerthesetof regions, � , of a one-dimensionalspace.By imposinga parti-

tion, � , on � wecanapproximateelementsof � by elementsof ÒÇÓx [9]. Thatis, weap-

proximateregionsin � by functionsfrom � to theset Ò x �»� fo � po
�
no ' . Thefunction

which assignsto eachregion «D$Ô� its approximationwill bedenotedÕ x /��c1ÖÒ�Óx .

Thevalueof
� Õ x « �U× is fo if « coversall of thecell

×
, it is po if « coverssomebut not

all of the interior of
×
, andit is no if thereis no overlapbetween« and

×
. [9] call the
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elementsof ÒÇÓx theoverlapandcontainmentsensitive approximationsof regions «j$D�
with respectto theunderlyingregionalpartition � .

4.1.2.Boundarysensitiveapproximation

Considera one-dimensionalnon-directedspace.Wecanfurtherrefinetheapprox-

imation of regions � with respectto thepartition � by taking boundarypointsshared

by neighboringpartition regions into account. That is, we approximateregions in �
by functions from �@Ø�� to the set Ò\Ù�� � fo � bo

�
nbo

�
no ' . The function which

assignsto eachregion «»${� its boundarysensitive approximationwill be denotedÕ4Ùj/G�Ê1ÚÒ Ó:ÛÜÓÙ . Thevalueof
� Õ�ÙÝ« �Þ�Î× � �ß×	à§� is fo if « coversall of thecell

× � , it is bo
if « coverstheboundarypoint,

�Î× � �ß×	à©� , sharedby thecell
× � and

×	à
andsomebut notall

of theinterior of
× � , it is nbo if « doesnot cover theboundarypoint

�Î× � �ß× à � andcovers

somebut notall of theinteriorof
× � , andit is no if thereis nooverlapbetween« and

× � .
4.1.3.Thesemanticsof approximateregions

Eachapproximateregion � Ó $²Ò�Óx ( � Ó $ Ò Ó:ÛÜÓÙ ) standsfor a set of precise

regions,i.e., all thosepreciseregionshaving theapproximation� Ó with respectto the

partition � . This set will be denoted I I � Ó K K x ( I I � Ó K K Ù ) and provides a semanticsfor

approximateregions.

I I � Ó K K x �»�	«*$f�� VÕ x «¹��� Ó ' � I I � Ó K K Ù ���	«�$?�� VÕ4ÙÝ«���� Ó '
Wherever thecontext is clearthesubscriptsandsuperscriptsareomitted.

4.2. Approximateoperations

The domainof regions is equippedwith join andmeetoperations,á and
_

. [9]

showedthattheseoperationson regionscanbeapproximatedby pairsof greatestmini-

mal andleastmaximaloperationson approximations.In this paperI discusstheopera-

tions
_

and
_

onboundaryinsensitive approximationsandboundarysensitive approx-

imations.A detaileddiscussioncanbefoundin [9].

4.2.1.Boundaryinsensitiveoperations

Firstly we defineoperations
_

and
_

on theset Ò x �»� fo � po
�
no ' .



T. Bittner / ApproximateQualitativeTemporal Reasoning 21o no po fo

no no no no

po no no po
fo no po fo

o no po fo

no no no no

po no po po
fo no po fo

Theseoperationsextend to elementsof Ò Óx (i.e. the set of functionsfrom � to Ò!x )
by
� � _ âj�U× � � � ×Ü�k_ ��â³×k� andsimilarly for

_
. [9] showedthat theoutcomeof the

operations
_

and
_

onapproximations� and
â

constrainsthepossibleoutcomeof the

operation
]�_&a

for
] $ÔI I ��K K and

a $<I I â K K in sucha way that � _ â��²� Õ x �^]�_&aZ������ _*â . The symbol
�

designatesa partial orderbetweenapproximationsdefinedby� �<â
if andonly if for all

× $D� � � ×Ü�\�~��âÈ×Ü� with no
[

po
[

fo.

4.2.2.Boundarysensitiveoperations

We definetheoperation
_

on theset Ò\Ù�� � fo � bo
�
nbo

�
no ' asshown in theleft

tablebelow. This operationextendsto elementsof Ò Ó:ÛÜÓÙ (i.e. thesetof functionsfrom��ØD� to Ò Ù ) by
� � _*âj�Þ�Î× � �ß× à � � � � �Î× � �ß× à ��� _���â&�Î× � �ß× à ��� .o no nbo bo fo

no no no no no

nbo no nbo nbo nbo
bo no nbo bo bo

fo no nbo bo fo

o ã no nbo bo fo

no no no no no

nbo no ä�åÎæ�ç ähåèæ5ç nbo
bo no ä�åÎæ�ç bo bo

fo no nbo bo fo

The definition of the operation
_

is slightly morecomplicated(right tableabove). In

this casewe needto take the approximationvaluesreferring to both boundarypoints�Î× � �ß× �^é e � and
�Î× � �ß× �ëê e � into account.Letì �Î× � � ��� ��� � �Î× � �ß× �^é e ���m����â+�Î× � �ß× �Îé e �����m����� � �Î× � �ß× �ëê e ���m����âO�Î× � �ß× �ëê e ����� '

bethesetof pairsof approximationvaluesof � and
â

with respectto
× � . Wedefinethe

operation� _ â asfollows:� � _ â*�Þ�Î× � �ß× �ëê e � � � � �Î× � �ß× �ëê e ���!�0_ íÇîðï�ñèòó�!��â`�Î× � �ß× �ëê e ���
where

�0_ í!îôïßñÎò �
is definedas shown in the right table above and õ � ì � is definedas

follows: õ � ì � ��� no if
�
bo
�
bo
��R$ ì

nbo if
�
bo
�
bo
� $ ì l

This definition correspondsto the definition of operationson boundarysensitive ap-

proximationsof two-dimensionalregionsin theplanediscussedin [9]. Again, theout-
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comeof the operations
_

and
_

on approximations� and
â

constrainsthe possi-

ble outcomeof the operation
]i_öa

for
] $=I I �fK K and

a $=I I â K K in sucha way that� _ âÊ�~� Õ Ù �^]�_`ak���÷� � _*â , with
�

definedasabove with no
[

nbo
[

bo
[

fo.

5. Generalization of RCC5 relations

[8] showedthat therearetwo approachesto generalizing�¹ÂrÂ relationsbetween

preciseregionsto approximateones: the semanticand the syntactic. In the semantic

caseonedefinesthe �¹ÂrÂ relationshipbetweenapproximations� and
â

to betheset

of relationshipswhichoccurbetweenany pairof preciseregionsapproximatedby � andâ
, i.e., øúùZû � � �üâ�� �²���¹Â¹Â �^].��ak�  ] $ÈI I ��K K and

a $öI I â K KY' . In thesyntacticcaseone

takesaformaldefinitionof �¹Â¹Â in theprecisecaseandreplacesvariablesrangingover

regionsby variablesrangingover approximationsandthe meetoperation,
_

, between

regionsby thecorrespondingoperations
_

and
_

betweenapproximations.This syn-

tacticreplacementyieldspairsof relationsbetweenapproximations:onerelationdefined

using
_

andanotherdefinedusing
_

. Theserelationsconstrainthepossiblerelations,ý �^].��ak� , thatcanhold between
] $ºI I �fK K and

a $ÔI I â K K . In theremainderof this sectionI

discusssyntacticandsemanticgeneralizationsfor RCC5. A similar approachis taken

for RCC À e , RCC d e , andRCC
eUÅe in Sections6-8.

5.1. Syntacticgeneralization

If � and
â

areapproximateregions(i.e. functionsfrom � to Ò!x ) wecanconsider

thetwo triplesof Booleantruth-values[8]:� � _ â�R�~b � � _ â ��� � � _ â � â*�m��� � _*âþR�Ob � � _*â ��� � � _*â � â*�ml
In thecontext of approximateregions,thebottomelement,b , is thefunctionfrom � toÒ x which takesthevalueno for every elementof � . Eachof theabove triplesdefines

anRCC5relation,sotherelationbetween� and
â

canbemeasuredby apairof RCC5

relations. Theserelationswill be denotedby � � � �üâ�� and � � � �üâj� . Let
�

be the

orderingof theRCC5latticethenthefollowing holds:

Theorem 1 [8]. The pairs
� � � � �üâ��m� � � � �üâ���� which canoccurareall thosepairs� � � ( � for which � � ( with theexceptionof

�
PP
�
EQ
�

and
�
PPi

�
EQ
�
.
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5.2. Correspondenceof semanticandsyntacticgeneralization

Let thesyntacticgeneralizationof RCC5bedefinedby ø�ÿ�� � � �üâ�� � � � � � �üâ��m� � � � �üâ����m�
where� and � areasdefinedabove.

Theorem 2 [8]. For any approximateregions � and
â

the syntacticandsemantic

generalizationof RCC5areequivalentin thesensethatøúùZû � � �üâ�� �»� ý $ RCC5  � � � �üâ��÷� ý � � � � �üâ�� ' �
whereRCC5 is the set � EQ

�
PP
�
PPi

�
PO
�
DR ' , and

�
is the orderingin the RCC5

lattice.

6. Generalization of RCC À e relations

6.1. Syntacticgeneralization

Let � and
â

beboundarysensitive approximationsof regions
]

and
a
. Thegen-

eralizedschemehastheform��� � _ â�R>~b � � _ â >�� � � _ â > âj�m��� � _*â�R>~b � � _jâ >�� � � _jâ > âj���
where

� _ âþR>ObO� ���� ��� T � _ âþR�Ob
M � _ â �Ob and ®�� _ ® âþR�~b
F � _ â �Ob and ®�� _ ® â �~b

andwhere

� _ â >F�@� ���� ��� T ��� â or
� � R� â and � _ â ��� and ®�� _ ® â �Ob �

M � R� â and � _ â ��� and ®	� _ ® â7R�Ob
F � _ â�R���

andsimilarly for � _ â > â (by commutativity of
_

), andfor � _jâ=R>»b , � _jâ >� , and � _*â > â
using

_
insteadof

_
and � insteadof � . In this context the

bottomelement,b , is eitherthevalueno or thefunctionfrom �»Ø&� to Ò!Ù which takes

the value no for every elementof �þØÔ� . The formula ��� â is true if and only if� _ â �g� and � _ â � â . The formula � � â is true if andonly if � _*â �c�
and � _*â � â

. Thesedefinitionscorrespondto the definition
] � a

if andonly if]j_`a � ] and
]j_`a � a in Section3.2.1.
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The formula ®�� _ ® â R� b is true if and only there are partition cells,× � �ß× �ëê e $�� , suchthat one of the following conditionsholds: (1)
� � �Î× � �ß× �ëê e �����

bo and
��â��Î× � �ß× �ëê e ����� bo and

� � �Î× �ëê e �ß× � ���Ê[ bo and
��â+�Î× �ëê e �ß× � ����[ bo;

(2)
� � �Î× � �ß× �ëê e ����[ bo and

��â��Î× � �ß× �Xê e ����[ bo and
� � �Î× �ëê e �ß× � ����� bo and��â��Î× �ëê e �ß× � �����

bo; (3)
� � �Î× � �ß× �ëê e ���	�

bo and
��â��Î× � �ß× �ëê e ��� [

bo and� � �Î× �ëê e �ß× � ��� [
bo and

��â��Î× �ëê e �ß× � ���
�
bo; (4)

� � �Î× � �ß× �ëê e ��� [
bo and��â��Î× � �ß× �Xê e ����� bo and

� � �Î× �Xê e �ß× � ����� bo and
��â��Î× �ëê e �ß× � ���\[ bo.

Eachof theabove triplesdefinesanRCC À e relation,sotherelationbetween� andâ
canbe measuredby a pair of RCC À e relations. Theserelationswill be denotedby� À � � �üâ�� and � À � � �üâj� . Let � and

â
beapproximationsof one-dimensionalregions

in a one-dimensionalspaceandlet
�

be the orderingof the RCC À e lattice. Then the

following holds:

Theorem 3. Thepairs
� � À � � �üâ��m� � À � � �üâ���� whichcanoccurareall pairs

� � � ( � where� � ( with the exception of
�
TPP

�
EQ
�
,
�
TPPi

�
EQ
�
,
�
NTPP

�
EQ
�
,
�
NTPPi

�
EQ
�
,�

EC
�
TPP

�
,
�
EC
�
TPPi

�
,
�
EC
�
EQ
�
,
�
DC
�
EC
�
,
�
DC
�
TPP

�
,
�
DC
�
TPPi

�
, EC

�
NTPP

�
,�

EC
�
NTPPi

�
,
�
TPP

�
NTPP

�
,
�
TPP

�
NTPPi

�
Proof. (1) Wefirst show that � � � �üâ��÷� � � � �üâ�� where� �üâ $fÒ Ó:ÛÜÓÙ and � � � �üâj�
and � � � �üâ�� aredefinedas discussedin Section5.1. The structureof the argument

correspondsto the proof of Theorem1 in [8]. We simply usethe boundarysensitive

operationtablesdiscussedin Section4.2.2. Consequently, we have
� � � ( � if � and( are refinementsof distinct RCC5relations10. Assumethat � and ( are refinements

of the sameRCC5relation, i.e., refinementsof DR, PP, or PPi. Pairs
� � � ( � where �

and ( arerefinementsof the sameRCC5- relationand � R��( cannotoccur, sincethe

refinedrelationsaredistinguishedby theoutcomeof ®	� _ ® â which is independentof

theoperations
_

and
_

.

(2) Thecases
�
TPP

�
EQ
�
,
�
TPPi

�
EQ
�
,
�
NTPP

�
EQ
�
,
�
NTPPi

�
EQ
�

cannotoccur,

sincethey arerefinementsof
�
PP
� " �m� EQ

�
, whichcannotoccurby Theorem1.

(3) The cases
�
DC
�
TPP

�
,
�
DC
�
TPPi

�
,
�
EC
�
NTPP

�
, and

�
EC
�
NTPPi

�
cannot

occur. In thedefinitionof bothelementsof thesepairsthesub-formula®�� _ ® â occurs

whichresultis independentof thechoiceof
_

and
_

. Consequentlyin thedefinitionsof

compatiblerelations,eitherbothrelationshave ®�� _ ® â �Ob orbothhave ®	� _ ® â7R�Ob .

This rulesout theoccurrenceof thesecases.��
Boundarysensitive relationsarerefinementsof boundaryinsensitive relations,i.e., DC andEC arere-

finementsof DR andTPP Ï��ÎÑ andNTPP Ï��ÎÑ arerefinementsof PP Ï��ÎÑ .
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(4) The cases
�
EC
�
TPP

�
,
�
EC
�
TPPi

�
, and

�
EC
�
EQ
�

cannotoccur. Assume� À � � �üâ�� $@� TPP
�
EQ ' . Since ®�� _ ® â R�2b and � _*â ��� theremust be× � �ß× à $F� suchthat
� � �Î× � �ß× à ����� bo and

��â?�Î× � �ß× à ����� bo. By definition of
_

we

have bo
_

bo � bo andconsequently� _ â R�cb . This contradicts� À � � �üâ�� � EC
which implies � _ â �Ob . A similarargumentappliesto � À � � �üâ�� � TPPi.

A Haskell programgeneratingall remainingcasescanbe obtainedfrom the au-

thor. �

ConsiderTable1. Thenumbersindicatewhich casediscussedin theproof above

preventstheparticularpair
� � À � � �üâ��m� � À � � �üâj��� from occurring.Forpairsof relations

thatcanoccur ø�ÿ�� � � �üâ�� is given.

��� � ���
DC EC PO TPP NTPP EQ

DC � DC � (1) � DC � EC � PO � (3) � DC � EC � PO � � DC � EC � PO �
TPP � NTPP � TPP � NTPP � EQ �

EC (1) � EC � � EC � PO � (4) (3) (4)

PO (1) (1) � PO � � PO � TPP � � PO � TPP � � PO � TPP �
NTPP � NTPP � EQ �

TPP (1) (1) (1) � TPP � (1) (2)

NTPP (1) (1) (1) (1) � NTPP � (2)

EQ (1) (1) (1) (1) (1) � EQ �
Table1

Possiblepairsof minimalandmaximalrelations(TherelationsTPPi andNTPPi areomitted.)

Considerthe underlinedsetsof relationsin Table1. At the syntacticlevel these

relationscanoccuronly if we allow for approximationsthatdescribeonly complex re-

gions,i.e., approximations� suchthatall
] $�I I �fK K arecomplex regions. This will be

discussedin moredetail in Section7.1.

6.2. Correspondenceof syntacticandsemanticgeneralization

Let � be the setof regular one-dimensionalregionsin a one-dimensionalspace.

Thoseregionsmaybeintervals, i.e., maximallyconnectedregions,or complex regions

consistingof multiple disconnectedparts.Let � and
â

beboundarysensitive approxi-
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mationsof regions
]4��a $8� andlet RCCrangeover RCC5, RCC À e , RCC d e , RCC

eUÅe .

Thenthefollowing holds:

Lemma 4. If thereare
× � �ß×	à $þ� suchthat

� � �Î× � �ß×	à§��� � ��â&�Î× � �ß×	à ��� � bo then����� � ý $ RCC  ý �^]4��aZ�m��] $ÈI I ��K K ��a $ÈI I â K KY'�� PO.

Proof. Assumethat
] $vI I ��K K and

a $ÈI I â K K areregularregions.Sincethereare
× � �ß× à $� suchthat

� � �Î× � �ß× à ��� � ��â?�Î× � �ß× à ��� � bo wehave ® �^]�_�× � �M_ ® �^a�_�× � ��R�~b and,by

regularity,
]�_?a¸R�²b . By definitionof bo, we have

�^]�_`× � ��[F× � 11. Since
]

and
a

are

arbitrary, possiblycomplex one-dimensionalregionswehave ����� ���^]¹_r× � �Z_f�^a�_�× � � ��^]*_�× � ��� � F and ����� ���^]j_�× � ��_8�^a�_�× � � � �^a³_5× � ��� � F. By thedefinitionof RCC5

andall its refinementswe have ����� � ý $ RCC  ý �^].��ak�m��] $ÈI I ��K K ��a $¸I I â K KY'�� PO. �

It is importantto stressthatLemma4 presupposesthatwe allow for complex re-

gions.Consider, for example,configuration(h) in Figure8. Wehave
� � �Î× � �ß× �^é e ��� � bo

and
��â&�Î× � �ß× �Îé e ��� � bo and

] $ I I ��K K and � a e ��a w ��a x '! I I â K K and PO
�^]4��a w � ,

TPPi
�^].��a e � , andTPP

�^]4��a x � ). Consequentlywehave
]h_CafR�ObO� T, ����� �^]�_a � ]�� �

F, ����� �^]�_`a � aZ� � F, and ����� � ý $ RCC À e  ý �^]4��aZ�m��] $öI I ��K K ��a $öI I â K KY'�� PO.

Let "CÁ ª�� � �üâ�� be a set of RCC À e relationsdefinedas "CÁ ª�� � �üâ�� � � ý $
RCC À e¡ ý �^].��ak�m��] $ I I ��K K ��a $PI I â K KY' with I I ��K K# 2� and I I â K K# 2� . Assume� � �Î× � �ß×Ýà ��� � bo and

��â`�Î× � �ß×Ýà§��� � bo. Sincebo
_

bo � bo we have � _ â=R�~b and

possibly, dependingon theoutcomeof
� � �Î×%$Ü�ß×'&^���k_ ��â&�Î×'$H�ß×%&Î��� with " R� W and

T¸R�)( ,� _ â ��� and/or� _ â � â . Thismeansthat � À � � �üâ���� PO. If � À � � �üâ�� N PO
thenthis conflictswith ����� � "Á ªÊ� � �üâ���� � PO. That is why we definethesemanti-

cally correctedsyntacticgeneralizationof RCC À e as:ø�ÿ�� � � �üâ�� � � � À* � � �üâj�m� � À � � �üâ����
where� À* � � �üâ�� � PO if thereare

× � �ß×	à $D� suchthat
� � �Î× � �ß×	à©��� � ��â?�Î× � �ß×Ýà ��� � bo

and � À* � � �üâ�� ��� À � � �üâ�� otherwise.Thesemanticgeneralizationof RCC À e relations

is definedas øúùZû � � �üâj� �»� ý $ RCC À e� §� À* � � �üâ��÷� ý � � À � � �üâ�� ' .
Theorem 5. For any boundarysensitive approximations� and

â
of regular one-

dimensionalregions,thesyntacticandsemanticgeneralizationsof RCC À e areequivalent

in thesensethat ø�ÿ+� � � �üâj� �OøZùZû � � �üâ�� �,"Á ªÊ� � �üâ�� .�Y� �.- � if f �¶ � µ?� and �÷¶ �0/µ � .
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Proof. Correspondingto the proof of Theorem2 in [8] thereare threethingswhich

mustbeshown. First, thatfor all
] $öI I �fK K , and

a $vI I â K K , that � À* � � �üâj�Ç� ý �^]4��aZ� withý $ RCC À e . Secondly, for all
]

and
a

asbefore,that ý �^].��ak�³� � À � � �üâ�� , andthirdly

that if ý is any RCC8relationsuchthat � À* � � �üâ���� ý � � À � � �üâ�� thenthereexist

particular
]

and
a

whichstandin therelation ý to eachother.

First, we need to consider two cases: (i) There are
× � �ß×	à $ � such that� � �Î× � �ß×	à©��� � bo and

��â?�Î× � �ß×	à©��� � bo. In this casewe have � À* � � �üâ�� � PO
�ý �^]4��aZ� by Lemma4. (ii) Otherwise:In this caseit is necessaryto considereachof the

threecomponents� _ âþR>Ob , � _ â >�� , and � _ â > â .

If � _ â¡R>ÉbÉ� M thenwe have to show that for all
] $cI I �fK K and

a $cI I â K K
that

]f_Ba�R>�b �
M. If � _ â¡R>Éb�� M then ®	� _ ® â R�Éb . By definition of®�� _ ® â R�Êb therearefour possiblecases.We discussthecase

� � �Î× � �ß× �Xê e ���0� bo
and

��â��Î× � �ß× �Xê e ����[ bo and
� � �Î× �ëê e �ß× � ����[ bo and

��â+�Î× �Xê e �ß× � ���1� bo. Theother

casesaresimilar. By definitionof bo andno at leastoneboundarypointof all
] $öI I ��K K

and
a $ÈI I â K K coincidewith theboundarypoint,

× � 3 × �ëê e , sharedby thecells
× � and

× �Xê e .
If ¼ ½ is thesetof boundarypointsof

]
and ¼p¾ is thesetof boundarypointsof

a
thenwe

have
× � 3 × �ëê e $?¼ ½ and

× � 3 × �ëê e $�¼�¾ and,hence,® ]³_ ® aBR�Ob and
] > a8R�ObO� M.

If � _ âþR>+b~� T thenfor all
] $ÈI I ��K K and

a $ÈI I â K K weshow that
]:_\aiR>ObO� T.

If � _ â R>PbP� T then thereare
× � �ß×	à $g� suchthat (a)

� � �Î× � �ß×	à ��� � bo and��â?�Î× � �ß×	à§��� � bo or (b)
� � �Î× � �ß×Ýà§��� � fo and

��â`�Î× � �ß×Ýà§����R� no or (c)
� � �Î× � �ß×Ýà§����R� no

and
��â`�Î× � �ß×Ýà§��� �32�� . In case(a) we have

]?_ia�R�=b by Lemma4. In case(b) we

have cells
× � with

]*_&× �� × � , a¹_5× � R��b and,hence,
]�_&a¸R��b andsimilarly for (c).

Consequentlywe have
]*_`a8R>ObO� T.

If � _ â >þ� � M thenwe have to show for all
] $ÊI I �fK K and

a $ÊI I â K K that]`_Da > ]4� M. If � _ â >�� R� F then � _ â �c� . If � _ â ��� thenfor all× � �ß×Ýà $v� if
� � �Î× � �ß×	à©���jR� no then

��â`�Î× � �ß×Ýà§��� � fo12. By definitionof nbo, bo, and

fo wehave if
]�_�× � R�+b then

a!_*× �4� × � and,hence,
]³_�a � ] . Consequentlywehave]j_`a > ]5� M.

If � _ â >��@� T thenwehave ��� â or
� � R� â and� _ â ��� and ®	� _ ® â �b � . We discussthecase� R� â andomit ��� â . We have to show for all

] $�I I �fK K anda $ÈI I â K K that
]*_&a > ] � T, i.e.,

]*_&a � ] and ® ]�_ ® a �~b . Wehave alreadyshown

above that if � _ â �O� then
]�_&a � ] andthat if ®�� _ ® â R��b then ® ]j_ ® aöR��b ,

andhence,if ®	� _ ® â � b then ® ]5_ ® a � b . If � _ â >���� T then � _ â ���
and ®�� _ ® â �²b . Consequentlywe have

]�_&a > ] � T. Theproof for � _ â > â�Î�
ThecaseÏ�6�Ï87 ñ �97;:mÑYÑ µ Ï�<�Ï87 ñ �97;:mÑYÑ µ fo wasalreadydealtwith in (i).
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is similar.

Second:Theproof ý �^].��ak�\� � À � � �üâ�� is similarandis omittedhere.

Third: we have to show that if ý is any RCC8relationsuchthat � À* � � �üâ���� ý �� À � � �üâ�� thenthereexist particular
]

and
a

whichstandin therelation ý to eachother,

i.e.,wehaveto show thatall setsof relationsin Table1 doactuallyoccur. Wediscussthe

case
�
DC
�
PO
�

andgive examplesfor theothers.Dueto � � DC we have � _ â �~b
and due to �P� PO we have � _*â R� b , � _*â R��� and � _�â R� â

. There

cannotbe
× � �ß×	à $�� with

� � �Î× � �ß×	à§��� � bo and
��â&�Î× � �ß×	à§��� � bo,

� � �Î× � �ß×	à©��� � fo
and

��â`�Î× � �ß×Ýà§���vR� no, and
� � �Î× � �ß×Ýà§���vR� no and

��â&�Î× � �ß×	à©��� � fo. Theremust be× �Îé e �ß× � �ß× �ëê e $D� suchthat
� � �Î× � �ß× �Îé e ��� � bo,

��â`�Î× � �ß× �^é e ��� � nbo,
� � �Î× � �ß× �ëê e ��� �

nbo and
��â&�Î× � �ß× �ëê e ��� � bo. Consequentlythereare

] $�I I ��K K and
a $�I I â K K suchthat

the relation ý that holdsbetween
]

and
a

is anywherebetweenDC
� ý � PO. This

holdsin particularfor configuration(a) in Figure8. Wehave DC
�^].��a e � , EC

�^]4��a w � , and

PO
�^].��a x � .

Examplesfor the remainingcasesare given in configurations(b-g) in Figure

8. Configuration(b) is an example for
�
DC
�
NTPPi

�
, i.e., DC

�^]4��a Å � , EC
�^]4��a x � ,

PO
�^].��a Ù � , TPPi

�^].��a w � andNTPPi
�^].��a e � ; (c) is anexamplefor

�
EC
�
PO
�

(This case

canonly occur if
]

and
a

arecomplex regions), i.e., EC
�^]4��a e � andPO

�^]4��a w � ; (d) is

an examplefor
�
PO
�
NTPPi

�
, i.e., PO

�^]4��a x � , TPPi
�^].��a w � , andNTPPi

�^].��a e � ; (e) is

anexamplefor
�
PO
�
TPPi

�
, i.e., PO

�^].��a w � andTPPi
�^].��a e � (This casecanonly occur

if
]

or
a

is a complex region); (f) is an examplefor
�
PO
�
EQ
�
; (g) is an examplefor�

DC
�
EQ
�
. �

7. Generalization of RCC d e relations

7.1. Convex hull operation

Let � and
â

be boundarysensitive approximationsof regions
]

and
a
. Since

RCC d e relationsaredefinedfor one-dimensionalintervalsandconvex hulls, =] , of com-

plex one-dimensionalregions,
]
, weneedto defineacorrespondingoperation, =� , in the

approximationdomain. We startby definingoperations( � «v/�ÒÇÓ:ÛÜÓ 1 Ò�ØöÒ that

return:
� ( � � ��� the leftmostpair

� � �Î× � �ß× �Îé e �m� � �Î× � �ß× �ëê e ��� with
� � �Î× � �ß× �^é e ���&R� no;� « � � ��� the rightmostpair

� � �Î×Ýà0�ß×Ýà é e �m� � �Î×	àV�ß×	à ê e ��� with
� � �Î×Ýà0�ß×Ýà ê e ���vR� no. If" R� T thentheconvex hull operationreplacesthesevaluesin =� asindicatedin thetable

below andsets
� =� �Î×'$H�ß×%$ é e ��� � fo and

� =� �Î×%$#�ß×%$ ê e ��� � fo for all "+>�z [FW?[ÈT .
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(a)

(f)(e)(d)

(g) (h)

x y1 y2 y3 y4 y5

(b) (c)

Figure 8. Eachconfigurationdepictscells of a partitionedline (cell boundariesare indicatedby small

vertical lines). One-dimensionalregions � and � � - � � arelocatedon theline. Depictionsof theseregions

aredrawn above the line. The actualregionsarelocatedon the line andcanbe identifiedby orthogonal

projectionsof their depictionsontotheline. Thelegendin thebottomof thefigureshows which line-style

signifieswhich region.

? å�@5ç ,AVå�@5ç å nbo � nbo ç å nbo � bo ç å bo � nbo ç å bo � bo ç å fo � fo ç? åCB@�ç å nbo � bo ç å nbo � bo ç å fo � fo ç å fo � fo ç å fo � fo ç
AVåDB@`ç å bo � nbo ç å fo � fo ç å bo � nbo ç å fo � fo ç å fo � fo ç

If "8� T
then we have ( � � � �P« � � � and « � =� � �E( � =� � �
( � � � except for pairs

( � � � � �
bo
�
bo
�

wherein ( � =� � pairs
�
bo
�
bo
�

are replacedby pairs
�
fo
�
fo
�
, i.e., if

( � � � � � bo
�
bo
�

then ( � =� � � � fo � fo � .
Let � be a boundarysensitive approximation.The correspondingsetof regionsI I �fK K certainlycontainscomplex regionsandmaypossiblycontainintervals.Theconvex-

hull-set of � , denotedby ÂGF � � � , is the set of the convex hulls of all
] $�I I ��K K :ÂHF � � � �Ú�I=]  ] $=I I �fK KY' . Lemma6 tells us that ÂGF � � � is a propersubsetof

theregions, I I =�fK K , thatareapproximatedby =� , i.e., thatthereareregionsin I I =�iK K thatare

not convex hulls of regionsin I I �fK K . Therearesomecomplex regionsin I I =�fK K .
Lemma 6. ÂHF � � �  ~I I =�iK K l



30 T. Bittner / ApproximateQualitativeTemporal Reasoning

��J%KóÏ�L©Ï � Ñ£�M7N:LÑ L©Ï � Ñ µ L�Ï87N:LÑ
O Ï � Ñ µ O Ï87 ñ Ñ O Ï�6³Ñ µ Ï bo �;P0Q nbo � bo RLÑ or

O Ï�6³Ñ µ Ï bo �;PGQ nbo � bo RmÑ orO Ï�6³Ñ µ Ï fo � fo Ñ O Ï�6³Ñ µ Ï fo � fo ÑS O ÏUT6³Ñ µ Ï fo � fo Ñ S O ÏVT6¹Ñ µ Ï fo � fo Ñ
L©Ï�6³Ñ µ Ï9PHQ nbo � bo RÞ� nbo Ñ L©Ï�6�Ñ µ Ï9PHQ nbo � bo RÝ� bo Ñ or

L©Ï�6�Ñ µ Ï fo � fo ÑS L©ÏUT6�Ñ µ Ï bo � nbo Ñ S L�Ï�T6³Ñ µ Ï fo � fo Ñ
��JWKóÏ O Ï � Ñ£�97 ñ Ñ O Ï�6³Ñ µ Ï nbo �NPHQ nbo � bo RLÑ O Ï�6³Ñ µ Ï nbo �;P0Q nbo � bo RLÑS O Ï T6³Ñ µ Ï nbo � bo Ñ S O Ï T6¹Ñ µ Ï nbo � bo Ñ

L©Ï�6³Ñ µ Ï9PHQ nbo � bo RÞ� nbo Ñ L©Ï�6�Ñ µ Ï9PHQ nbo � bo RÝ� bo Ñ or

L©Ï�6�Ñ µ Ï fo � fo ÑS L©ÏUT6�Ñ µ Ï bo � nbo Ñ S L�Ï�T6³Ñ µ Ï fo � fo Ñ
Table2

Proof. Let ( �9X�� returntheleftmostboundarypointof
X

andlet « �9XH� returntherightmost

boundarypoint of
X

for arbitraryone-dimensionalregions
X

in a directedspace. By

thedefinitionof theconvex hull for one-dimensionalregionswe have ( �9XH� �Y( � =XÜ� and« �9X�� �~« � =XH� and =X is theinterval boundedby ( � =XH� and ( � =X�� . Assumefurthera predicate"Ì¥h� �^aG�ZXH� thatreturnsTrueif
a

is aninteriorpoint of theregion
X

andfalseotherwise.ÂGF � � � )�I I =�iK K l Let
]

be an arbitraryelementof ÂGF � � � , i.e.,
] $²ÂHF � � � .

Consequently, thereis an
]V[

in I I �fK K suchthat
] �\=]V[ with ( �^]�� �4( �^]U[ë� and « �^]h� �F« �^]U[è� .

Considerthepartitioncells
× � and

×	à
with " [öT 13. Table2 lists thecasescanoccur. We

discussthecase( �^]h� �4( �Î× � � and"Ì¥h� � « �^]h�m�ß× à � theothersaresimilar. In thiscasewehave

( � � � � �
bo
�
nbo

�
, ( � � � � �

bo
�
bo
�
, or ( � � � � �

fo
�
fo
�

and, « � � � � �
nbo

�
nbo

�
or« � � � � � bo

�
nbo

�
. By definitionof =� we get ( � =� � � � fo � fo � and « � =� � � � bo

�
nbo

�
.

Consequentlywehave for all
] [ [ $¸I I =�iK K4/W( �^] [ [ � �4( �Î× � � and "Ì¥ � « �^] [ [ �m�ß×	à§� . By definition

of =� (we ‘fill’ everythingbetween( � � � and « � � � with fo) all intervals with ( �^] [ [ � �
( �Î× � � and "Ì¥ � « �^] [ [ �m�ß×	à � areelementsof I I =�DK K andin particular

]
, i.e.,

] $¸I I =�iK K .I I =�DK K R){ÂGF � � �ml Assume� � =� � � �
bo
�
nbo

�
, i.e., thereis a partition cell such

that
� =� �Î×	àV�ß×	à é e � � bo. By definitionof bo all regionsin I I =�iK K partiallyoverlaptheleft

partof thecell
×	à

. In particularthereis a region
] $ÔI I =�fK K suchthat

]j_`×Ýà
is a complex

region. By definitionof ÂGF � � � we have
]öR$iÂGF � � � . �

By Lemma6 I I =�DK K containsthe convex hulls, =] , of all
] $»I I �fK K but if � is such

that the left mostand/orthe right mostpartsof the
] $�I I �fK K partially overlappartition

cells
× � and/or

×	à
thenthe intersectionof these

]
with

× � and/or
×Ýà

may be a complex�è�
Thespecialcase� µ�] is omittedherebut is similar to thecasesdiscussedin whatfollows.



T. Bittner / ApproximateQualitativeTemporal Reasoning 31

region, andhence,these
]

arecomplex regions. Thedefinitionof =� ensuresthat there

areno suchapproximationsthatsemanticinterpretationscontainonly complex regions.

Furthermoreit ensuresthat if therearecomplex regionsin I I =�fK K thenthecomplex parts

of thoseregionsareonly at the very left andthe very right (relative to the underlying

partition).

7.2. Syntacticgeneralization

Let � and
â

be boundarysensitive approximationsof regions
]

and
a
. Since

RCC d e relationsareonly definedfor intervalsweneedto applytheconvex hull operator,

i.e., we consider =� and =â . At the level of approximationswe cannotcompletelyex-

cludecomplex regions.Wecanonly excludeapproximationsthatcontainonly complex

regions.Wecanconsiderthetwo triplesof truth values14:� =� _ =â7R;Ob � =� _ =â ; =� � =� _ =â ; =â*�m��� =� _ =âþR;Ob � =� _ =â ; =� � =� _ =â ; =âj�ml
with

=� _ =â�R;~bO� ���� ��� FLO if =� _ =â �Ob and
� =�_^ =â*�

FRO if =� _ =â �Ob and
� =�_` =â*�

T if
]*_&aiR�Ob

andwith

=� _ =â ; =�=�
��������� ��������
FLO if =� _ =âþR� =� and =� _ =â�R� =â and

� =�_^ =âj�
FRO if =� _ =âþR� =� and =� _ =â�R� =â and

� =�_` =âj�
FLI if =� _ =âþR� =� and =� _ =â � =â and

� =�_^ =âj�
FRI if =� _ =âþR� =� and =� _ =â � =â and

� =�_` =âj�
T if =� _ =â � =�

andwith

=� _ =â ; =�=�
��������� ��������
FLO if =� _ =âþR� =� and =� _ =â�R� =â and

� =�_^ =âj�
FRO if =� _ =âþR� =� and =� _ =â�R� =â and

� =�_` =âj�
FLI if =� _ =âþR� =� and =� _ =â � =â and

� =â ` =� �
FRI if =� _ =âþR� =� and =� _ =â � =â and

� =â ^ =� �
T if =� _ =â � =�

andsimilarly for =� _ =âþR;~b , =� _ =âþR;Ob , =� _ =â ; =â , and =� _ =â ; =â .

Thenotation �a^ â is anabbreviation for � � â�R� F and � � â3� � � â
andthenotation �\` â is anabbreviation for � �2âPR� F and � �2â N»� � â

.� �
Similar relationsweredefinedin [4] usingboundaryinsensitive approximations.
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We define � �Öâ
asshown in the tablebelow, where ��� â is an abbreviation for� _ â �~� and � _ â � â , � [�â

is anabbreviation for � _ â �~� and � R� â ,

and �ÉN â is anabbreviation for � _ â � â and � R� â .� ��â � � � � _ �@�Ob or � ��â�� _*â �Ob � � � � _ � R�~b and� ��â�� _*âþR�Ob� � � �![ � ��â*� T T� � � � ��� ��â*� F M� � � � N<� ��â*� F F

We define � � â
following the samepatternbut using � � � � and � ��â*� insteadof� � � � and � ��âj� . � and � aredefinedassumingthatpartitioncells

× � arenumberedin

increasingorderin thedirectionof theunderlyingspace.Let ����� � ��bdc /MÒ Ó:ÛÜÓ 1 ì
befunctionsreturningtheindex of thecorrespondingleftmost(rightmost)partitioncell

with
� � �Î× � �ß×	à©����R� no, i.e., ����� � � � � ����� � W  � � �Î×'$��ß×%&^����R� no ' and ��bdc � � � ���bdc � W  � � �Î×'$H�ß×%&Î����R� no ' . Wedefine� � � �� � � � ���Î× � �ß×	à§��� � ���� ��� fo if " [ ����� � � �

bo if "� ����� � � � and
T ��"De<z and

� � �Î× � �ß×	à§��� � nbo
no otherwise

and � � � �� � � � ���Î× � �ß× à ��� � ���� ��� fo if "¬N ��bdc � � �
bo if "� ��bdc � � � and

T �F"+>�z and
� � �Î× � �ß×Ýà§��� � nbo

no otherwise

l
Eachof theabove triplesdefinesanRCC d e relation,sotherelationbetween =� and

=â canbe measuredby a pair of RCC d e relations. Theserelationswill be denotedby� d � =� � =âj� and � d � =� � =â*� .
Theorem 7. Thepairs� ����� � � d � =� � =â��m� � d � =� � =âj���m� ��bdc � � d � =� � =âj�m� � d � =� � =â*�����
that can occur are all pairs

� � � ( � where � � ( � EQ and EQ
� � � ( with

the exception of
�
PPL

�
EQ
�
,
�
PPR

�
EQ
�
,
�
PPiL

�
EQ
�
,
�
POL

�
PPL

�
,
�
PPL

�
PPiL

�
,�

POR
�
PPR

�
,
�
PPR

�
PPiR

�
,
�
PPiR

�
EQ
�
, and

�
EQ
�
DRR

�
.

Proof. (1) Westartby showing thatthereareno =� and =â suchthat � d � =� � =â��÷[ EQ
[� d � =� � =âj� or � d � =� � =â*�5[ EQ

[ � d � =� � =âj� . Assumea deterministicprocedurethat

alwayschecksFLO first andthenchecksFRO, FLI, FRI, T in this orderfor all entries
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in thedefinition table.15 Whetheror not � � =� � =â���[ EQ or � � =� � =âj� N EQ depends

only on the truth-valueof the formulas =� � =â , =� � =â , =â7� =� , and =â=� =� . In

any casethe truth-valueof the formulasis the samefor � d andfor � d . Consequently

the cases� d � =� � =â��5[ EQ
[ � d � =� � =âj� and � d � =� � =âj�5[ EQ

[ � d � =� � =â*� cannot

occur. Without lossof generalitywe needonly considerpairs
� � � ( � where � � EQ and( � EQ. Sincetheoutcomeof

�
and

�
is thesamefor � and ( theorderingdepends

only on theoutcomeof theoperations
_

and
_

. This leavesonly thepairs
� =� _ =â�R�b � =� _ =â � =� � =� _ =â � =â*� and

� =� _ =âSR�gb � =� _ =â � =� � =� _ =â � =â*� thatneed

to beconsidered,i.e., theRCC5case.By Theorem1 we have � � ( , i.e., � d � =� � =âj���� d � =� � =âj�÷� EQ. A similarargumentappliesto pairs
� � � ( � where� � EQ and (�N EQ.

Dueto thereverseorderingT
[

FRI
[

FRO we have EQ
� � d � =� � =âj�\� � d � =� � =â*� .

(2) The pairs
�
PPL

�
EQ
�
,
�
PPR

�
EQ
�
,
�
PPiL

�
EQ
�
,
�
PPiR

�
EQ
�

cannotoccur,

sincethecorrespondingrelations
�
PP
�
EQ
�
,
�
PPi

�
EQ
�

cannotoccurin theRCC5case.

(3) The pair
�
EQ
�
DRR

�
cannot occur. Considerapproximations =� and =â .

For
�
EQ
�
DRR

�
(and

�
DRL

�
EQ
�
) to hold there must be a single

× �g$ � such

that
� =� �Î× � �ß× �^é e ��� � nbo,

� =� �Î× � �ß× �ëê e ��� � nbo,
� =â+�Î× � �ß× �^é e ��� � nbo, and� =â+�Î× � �ß× �ëê e ��� � nbo. Due to the non-symmetricdefinition of FLO and FRO in

=� _ =âþR;Ob and =� _ =âþR;Ob thecase� d � =� � =â�� � DRR cannotoccur.

(4)Thepairs
�
POL

�
PPL

�
,
�
PPL

�
PPiL

�
,
�
POR

�
PPR

�
,
�
PPR

�
PPiR

�
,
�
POL

�
EQ
�
,�

POR
�
EQ
�

cannotoccursincesincethesecasescanonly occurfor approximations�
and

â
whereeither I I �fK K or I I â K K or bothcontainonly complex regions. Thesecasesare

excludedby using =� and =â ratherthan � and
â

in the definitionsabove. A Haskell

programgeneratingall remainingcasescanbeobtainedfrom theauthor. �

ConsiderTable3. Thenumbersindicatewhich caseof theproof discussedabove

preventstheparticularpair from occurring.Themeaningof therow � d* � POL will be

discussedbelow.

7.3. Correspondenceof semanticandsyntacticgeneralization

At thesyntacticlevel thepair
�
DRL

�
EQ
�
representsthemostindeterminatecase.It

occursif thereis asingle
× �C$D� suchthat

� =� �Î× � �ß× �Îé e ��� � nbo,
� =� �Î× � �ß× �ëê e ��� � nbo,� =â+�Î× � �ß× �^é e ��� � nbo, and

� =â+�Î× � �ß× �ëê e ��� � nbo. Since
�
DRL

�
EQ
�

is consistentwith�
EQ
�
DRR

�
and

�
DRL

�
EQ
�

waschosenarbitrarily(thenon-symmetryin thedefinitions�Î�
Thisassumptionis neededsincetheRCC � � relationsarenotJEPD.
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f � g f � DRL POL PPL PPiL EQ

DRL Q DRL R Q DRL,POL R Q DRL,POL,PPL R Q DRL,POL,PPiL R Q DRL,POL,PPL,

PPiL,EQ Rf � µ POL (1) Q POL R (4) (4) (4)f �h µ POL (1) Q POL R Q POL,PPL R Q POL,PPiL R Q POL,PPL,

PPiL,EQ R
PPL (1) (1) Q PPL R (1) (2)

PPiL (1) (1) (1) Q PPiL R (2)

EQ (1) (1) (1) (1) Q EQ R
Table3

Syntacticgeneralizationof RCC � �
couldbetheotherway aroundaswell),

�
DRL

�
EQ
�

is correctedfor semanticreasonsto�
DRL

�
DRR

�
. Thecorrectedrelationwill bedenotedby � d* .

ConsiderLemma4. It tells usthat,if thereare
× � �ß×	à $B� suchthat

� � �Î× � �ß×Ýà§��� ���â&�Î× � �ß×	à©��� � bo, thenthereare
] $ÊI I �fK K and

a $ÊI I â K K with PO
�^].��ak�

. Notice that

Lemma4 is only trueif we allow complex regions.By Lemma6 theremaybecomplex

regionsin I I =�fK K . Dueto theseregionsLemma4 canbeapplied.Consequentlyweneedto

distinguishtwo cases:(a)Wehave � d* � =� � =âj� � POL if thereare
× � �ß× �ëê e $D� suchthat� =� �Î× � �ß× �ëê e ��� � � =â?�Î× � �ß× �Xê e ��� � bo and "¬�,i?"U¥ � =� � �ji?"Ì¥ � =âj� 16, and � d* � =� � =âj� �� d � =� � =âj� otherwise. (b) We have � d* � =� � =âj� � POR if thereare

×	àV�ß×	à é e suchthat� =� �Î×	à#�ß×Ýà é e ��� � � =â&�Î×Ýà#�ß×Ýà � e ��� � bo and
T �ki�� ]� =� � �4i�� ]� =â*� . Otherwisewehave� d* � � d or � d* � DRR.

Let thesyntacticgeneralizationof RCC d e relations,ø�ÿ�� , bedefinedbyø�ÿ+� � =� � =â*� � � ����� � � d* � =� � =âj�m� � d* � =� � =â����m� ��bdc � � d* � =� � =â��m� � d* � =� � =â������m�
where � d* and � d* aredefinedasdiscussedabove andlet thesemanticgeneralizationof

RCC d e relations,øúùZû , bedefinedasøúùZû � =� � =âj� �º� ý $ RCC d e  ����� � � d* � =� � =âj�m� � d* � =� � =âj���\� ý �
��bdc � � d* � =� � =â��m� � d* � =� � =â���� ' �

where
�

is the orderingin the RCC d e lattice. ConsiderTable 3 and ignore the row� d � POL. It shows ø�ÿ+� � =� � =â*� for � d* � � d* � EQ. The pairs
�
POL

�
PPL

�
,�

PO
�
PPiL

�
, and

�
PO
�
EQ
�

do occur due to the semanticcorrection of the pairs�è´ml ��JZÏ�6³Ñ and
lon � Ï�6³Ñ aredefinedasdiscussedin Section7.2.
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PPL

�
PPL

�
,
�
PPiL

�
PPiL

�
, and

�
EQ
�
EQ
�

in caseswhereLemma4 applies.Theorem

8 tells usthatthesemanticgeneralizationproducesthesametable.

Theorem 8. For approximations =� and =â the syntacticandsemanticgeneralizations

of RCC d e relationsare equivalent in the sensethat ø�ÿ+� � =� � =â*� �ÖøúùZû � =� � =â�� �
"Á ªÊ� � �üâ�� .
Proof. We considerthreecases: � d* � ý � � d* with � d* [ EQ and � d* N EQ,� d* � ý � � d* � EQ, and EQ

� � d* � ý [ � d* . For eachcasethereare three

thingsto demonstrate:(i) for all
] $vI I =�iK K , and

a $ÔI I =â K K , that � d* � =� � =âj�Ç� ý �^]4��aZ� withý $ RCC d e ; (ii) for all
]

and
a

asbefore,that ý �^].��ak��� � d* � =� � =âj� ; and(iii) if ý is any

RCC d e relationsuchthat � d* � =� � =âj�\� ý � � d* � =� � =âj� thenthereexist particular
]

and
a

whichstandin therelation ý to eachother.

Firstly, thereare two caseswherethereare ý e � ý w $)"CÁ ª which aresuchthatý e [ EQ
[ ý w : DRL

� ý � DRR andPOL
� ý � POR. In thecaseof DRL

� =� � =âj�\�ý �^]4��aZ��� DRR
� =� � =âj� there are only

× �~$�� such that
� =� �Î× � �ß× �^é e ��� � nbo,� =� �Î× � �ß× �ëê e ��� � nbo,

� =â��Î× � �ß× �^é e ��� � nbo, and
� =â��Î× � �ß× �ëê e ��� � nbo. By definition

of nbo all
] $ÈI I =�DK K andall

a $¸I I =â K K areproperpartsof
× � thatdonot intersectthebound-

ary of
× � . Onecansee(Figure9 (a)) thatthereareenoughnon-boundary-parts,

]
and

a
,

of
× � which aresuchthatall relationsý �^].��ak� with DRL

�^]4��aZ��� ý �^]4��aZ��� DRR
�^]4��aZ�

do actuallyoccur.

ConsiderthecasePPL
� =� � =â��¹� ý � PPR

� =� � =âj� ; it occursif � d � � d � EQ
and there are

× � �ß× �ëê e $Ú� such that
� =� �Î× � �ß× �ëê e ��� � � =â&�Î× � �ß× �Xê e ��� � bo and"v�pi?"Ì¥ � =� � �qi?"Ì¥ � =âj� and there are
×Ýà0�ß×Ýà é e $ � such that

� =� �Î×Ýà0�ß×Ýà é e ��� �� =â?�Î×	àV�ß×	à é e ��� � bo and
T �_i�� ]Æ� =� � �Yi�� ]Æ� =âj� . By definition of bo all

] $�I I =�fK K
and all

a ${I I =â K K do overlap. Consequently, the relationsDRL
�^].��ak�

andDRR
�^]4��aZ�

cannotoccur. Since � d � � d � EQ thereare
] $7I I =�DK K and

a $@I I =â K K suchthat

EQ
�^]4��aZ�

. ConsiderFigure9 (b) thereis enoughfreedomfor
] $ÈI I =�iK K and

a $ÈI I =â K K such

thatPPL
� =� � =â���� ý �^]4��aZ��� PPR

� =� � =â*� e.g.,POL
�^]4��a Ù � , POR

�^].��a e � , PPL
�^]4��a Ù � ,

POR
�^]4��a x , andEQ

�^].��a w � .
Secondly, in orderto show (i) for � d* � ý � � d* � EQ twocasesneedto beconsid-

ered:(a) Thereare
× � �ß× �^é e $B� suchthat

� =� �Î× � �ß× �^é e ��� � bo and
� =â&�Î× � �ß× �^é e ��� � bo.

In this casewe have � d* � =� � =âj� � POL
� ý �^]4��aZ� by Lemma4 andLemma6. (b) Oth-

erwise:In thiscaseit is necessaryto considereachof thethreecomponents=� _ =âþR>Ob ,
=� _ =â > =� , and =� _ =â > =â . Sincewe have � d* � ý � � d* � EQ it is sufficient to

show that if =� _ =â�R��b thenfor all
] $�I I =�DK K andall

a $FI I =â K K ]�_�aºR�Êb andsimilar
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for =� _ =â > =� , and =� _ =â > =â .

If =� _ =âÉR�²b thenthereare
× � �ß×	à $¸� with =� �Î× � �ß×	à©� � fo and =â��Î× � �ß×Ýà �³R� no

or =� �Î× � �ß×	à§�DR� no and =â��Î× � �ß×Ýà§� � fo. By definition of nbo and fo we have for all] $öI I =�fK K andall
a $öI I =â K K ]*_`a8R�Ob .

If =� _ =â � =� thenif =� �Î× � �ß×	à©�rR� no then =â��Î× � �ß×Ýà§� � fo. By definitionof nbo
andfo wehavefor all

] $¸I I =�iK K andall
a $ÈI I =â K K ]Ç_³a � ] . Similarly if =� _ =â � =â then]�_&a � a . To show (ii) for � d* � ý � � d* � EQ is accomplishedby a similar analysis

andis omittedhere.

ConsiderTable3. In order to show to show (iii) for � d* � ý � � d* � EQ we

needto show thatall setsof relationsin this tablecanactuallyoccur. We limit ourselfto

examplesfor � DRL
�
PPL ' and � POL

�
PPiL ' . ConsiderFigure9. Wehave DRL

�^].��a w �
andPOL

�^].��a e � in configuration(c) andwe have POL
�^].��a e � andPPiL

�^]4��a w � in con-

figuration(d).

Thirdly, to show (i), (ii), and(iii) for EQ
� � d* � ý � � d* is similar andtheproof

is omittedhere. �

x

(a) (b)

y1 y2 y3 y4 y5

(c) (d)

Figure9.

8. Generalization of RCC
eUÅe relations

8.1. Syntacticgeneralization

Let � and
â

beboundarysensitiveapproximationsof regions
]

and
a

in adirected

one-dimensionalspace.SinceRCC d e relationsaredefinedfor one-dimensionalintervals

andconvex hulls, =] , of complex one-dimensionalregions,
]
, weneedtoapplytheconvex

hull operator =� in theapproximationdomain.We considerthefollowing pair of triples

of truth values:� =� _ =â�R± b � =� _ =â²± =� � =� _ =â ± =â*�m��� =� _ =âþR± b � =� _ =â²± =� � =� _ =â ± =â*�ml



T. Bittner / ApproximateQualitativeTemporal Reasoning 37

where

=� _ =âþR± bO�
��������� ��������
T =� _ =â�R>Ob~� T
MLO =� _ =â�R>Ob~� M and =� _ =âþR;ObO� FLO
MRO =� _ =â�R>Ob~� M and =� _ =âþR;ObO� FRO
FLO =� _ =â�R>Ob~� F and =� _ =âþR;ObO� FLO
FRO =� _ =â�R>Ob~� F and =� _ =âþR;ObO� FRO

andwhere

=� _ =â�±�] �
�������������� �������������

T =� _ =â > =�@� T
MLI =� _ =â > =�@� M and =� _ =â ; =â � FLI
MRI =� _ =â > =�@� M and =� _ =â ; =â � FRI
FLO =� _ =â > =�@� F and =� _ =â ; =�7� FLO
FLI =� _ =â > =�@� F and =� _ =â ; =�7� FLI
FRO =� _ =â > =�@� F and =� _ =â ; =�7� FRO
FRI =� _ =â > =�@� F and =� _ =â ; =�7� FRI

andsimilarly for =� _ =âþR± b , =� _ =â ± =� , =� _ =â�± =â , and =� _ =â�± =â .

Eachof the above triples providesa RCC
eUÅe relation,so the relationbetween =�

and =â canbemeasuredby a pair of RCC
eUÅe relations.Theserelationswill bedenoted

by � eUÅ and � eUÅ � =� � =âj� .
Theorem 9. Thepairsof relations� ����� � � eUÅ � =� � =âj�m� � eUÅ � =� � =â����m� ��bdc � � eUÅ � =� � =âj�m� � eUÅ � =� � =âj�����
that can occur are all pairs

� � � ( � where � � ( � EQ and EQ
� � � ( with the

exception
�
DCL

�
ECL

�
,
�
DCL

�
TPPL

�
,
�
ECL

�
POL

�
,
�
ECL

�
TPPL

�
,
�
ECL

�
TPPiL

�
,�

ECL
�
NTPPL

�
,
�
ECL

�
NTPPiL

�
,
�
ECL

�
EQ
�
,
�
POL

�
TPPL

�
,
�
POL

�
TPPiL

�
,
�
POL

�
NTPPL

�
,�

POL
�
NTPPiL

�
,
�
POL

�
EQ
�
,
�
TPPL

�
NTPPL

�
,
�
TPPiL

�
NTPPiL

�
,
�
TPPL

�
EQ
�
,�

TPPiL
�
EQ
�
,
�
NTPPL

�
EQ
�
,
�
NTPPiL

�
EQ
�
, and the correspondingpairs with both

componentsgreaterthanor equalto EQ.

Proof. RCC
eUÅe relationsarerefinementsof RCC À e andrefinementsof RCC d e relations.

Consequently, if apair of relationscannotoccurin theRCC À e caseor in theRCC d e case

then the correspondingrefinementscannotoccur in the RCC
eUÅe case. By Theorem7

thereareno
� � � ( � suchthat � eUÅ � =� � =âj�r[ EQ

[ � eUÅ � =� � =â�� or � eUÅ � =� � =â*�r[ EQ
[� eUÅ � =� � =âj� . Pairs

� � � ( � with � � ( � EQ and pairs
� � � ( � with EQ

� � [ ( are

governedby Theorem3 with theadditionalconstraintthatRCC
eUÅe relationsareonly de-
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finedfor intervals,i.e.,for =� ratherthanfor approximations� in general.Consequently

thepairs
�
POL

�
TPPL

�
,
�
POL

�
TPPiL

�
,
�
POL

�
NTPPL

�
,
�
POL

�
NTPPiL

�
,
�
POL

�
EQ
�

andthecorrespondingpairswith bothcomponentsgreaterthanEQ cannotoccur, in cor-

respondenceto Theorem7.4. A Haskell programgeneratingall remainingcasescanbe

obtainedfrom theauthor. �
ConsiderTable4. It lists thepairs

� � � ( � with � � ( � EQ and � � ( R$8� TPPiL
�
NTPPiL '

andpointsto therelevantcasesin Theorems7 and3 thatapply.

� �UË � � �UË
DCL ECL POL TPPL NTPPL EQ

DCL � DCL � 3.1 � DCL �srtrtrt� 3.3 � DCL �trsrtrZ� � DCL �srtrsrZ�
POL � NTPPL � EQ �

ECL 3.1 � ECL � 7.4 3.4 3.3 3.4

� �ÌË t POL 3.1 3.1 � POL � 7.4 7.4 7.4
� �ÌËu t POL 3.1 3.1 � POL � 7.4 � POL �trsrtrt� � POL �srtrsrZ�

NTPPL � EQ �
TPPL 3.1 3.1 3.1 � TPPL � 3.1 3.2

NTPPL 3.1 3.1 3.1 3.1 � NTPPL � 3.2

EQ 3.1 3.1 3.1 3.1 3.1 � EQ �
Table4

Syntacticallypossiblepairs Ï n �9v�Ñ of minimal andmaximalRCC
�Î�� relationswith with

n Ð5vÇÐ EQ andn �Mv�/PHQ TPPiL � NTPPiL R .

8.2. Correspondenceof semanticandsyntacticgeneralization

Correspondingto thegeneralizationof theRCC À e andtheRCC d e relationssemantic

correctionsareneededin orderto generalizeRCC
eUÅe relationsbetweenintervals,

]
anda

, to pairsof RCC
eUÅe relationsbetweenapproximations =� and =â .

At thesyntacticlevel thepair
�
DCL

�
EQ
�

representsthemostindeterminatecase.

As in theRCC d e caseit occursif thereis asingle
× �$D� suchthat

� =� �Î× � �ß× �^é e ��� � nbo,� =� �Î× � �ß× �Xê e ��� � nbo,
� =â��Î× � �ß× �Îé e ��� � nbo, and

� =â��Î× � �ß× �Xê e ��� � nbo. Since�
DCL

�
EQ
�

is consistentwith
�
EQ
�
DCR

�
and

�
DCL

�
EQ
�

was chosenarbitrarily,�
DCL

�
EQ
�

is correctedfor semanticreasonsto
�
DCL

�
DCR

�
. The correctedrelation

will bedenotedby � eUÅ* .
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Lemma4 andLemma6 tell usthatif thereare
× � �ß×Ýà $B� suchthat

� =� �Î× � �ß×	à§��� �� =â?�Î× � �ß×	à§��� � bo then thereare
] $7I I =�DK K and

a $7I I =â K K with PO
�^]4��aZ�

. As in the

RCC d e casewe needto distinguishtwo cases:(a) We have � eUÅ* � =� � =â*� � POL if there

are
× � �ß× �ëê e $+� suchthat

� =� �Î× � �ß× �ëê e ��� � � =â&�Î× � �ß× �ëê e ��� � bo and "¹�wi?"U¥ � =� � �
i?"Ì¥ � =âj� , and � eUÅ* � =� � =âj� �þ� eUÅ � =� � =âj� otherwise. (b) We have � eUÅ* � =� � =âj� � POR
if thereare

×	àV�ß×	à é e $~� � =� �Î×	àV�ß×	à é e ��� � � =â&�Î×	àV�ß×	à � e ��� � bo and
T �3i�� ]Æ� =� � �

i�� ]Æ� =âj� . Otherwisewe have � eUÅ* � � eUÅ or � eUÅ* � DCR.

ConsiderTable4 andignoretherow � eUÅ � POL. It shows ø�ÿ�� � =� � =â�� for � eUÅ* �� eUÅ* �
EQ. The pairs

�
POL

�
NTPPL

�
,
�
POL

�
NTPPiL

�
, and

�
POL

�
EQ
�

do occur

dueto thesemanticcorrectionof thepairs
�
NTPPL

�
NTPPL

�
,
�
NTPPiL

�
NTPPiL

�
, and�

EQ
�
EQ
�

in caseswhereLemma4 andLemma6 apply. Theorem10 tells us that the

semanticgeneralizationproducethesametable.

Let thesyntacticgeneralizationof RCC
eUÅe bedefinedasø�ÿ+� � =� � =âj� � � ����� ��� eUÅ* � =� � =â��m� � eUÅ* � =� � =âj� ' � ��bdc ��� eUÅ* � =� � =â��m� � eUÅ* � =� � =â*� ' �m�

where� eUÅ* and � eUÅ* aredefinedasdiscussedabove.

Theorem 10. For approximations =� and =â syntacticand semanticgeneralizationof

RCC
eUÅe relationsareequivalentin thesensethatøúùZû � =� � =âj� ��� ý $ RCC

eUÅe  ����� ��� eUÅ* � =� � =âj�m� � eUÅ* � =� � =â�� '� ý � ��bdc ��� eUÅ* � =� � =âj�m� � eUÅ* � =� � =âj� 'V' �
whereRCC

eUÅe is thesetof RCC
eUÅe relationsand

�
is theorderingin theRCC

eUÅe lattice.

Proof. We considerthreecases:� eUÅ* � ý � � eUÅ* with � eUÅ* [
EQ and � eUÅ* N EQ,� eUÅ* � ý � � eUÅ* �

EQ, andEQ
� � eUÅ* � ý � � eUÅ* . For eachcasethereare three

thingsto demonstrate:(i) for all
] $ÈI I =�DK K , and

a $ÈI I =â K K , that � eUÅ* � =� � =â��÷� ý �^]4��aZ� withý $ RCC
eUÅe ; (ii) for all

]
and

a
asbefore,that ý �^].��ak��� � eUÅ* � =� � =â�� ; and(iii) if ý is

any RCC
eUÅe relationsuchthat � eUÅ* � =� � =â���� ý � � eUÅ* � =� � =âj� thenthereexist particular]

and
a

whichstandin therelation ý to eachother.

Firstly, therearetwo caseswhereare ý e � ý w8$OøúùZû suchthat ý e [ EQ
[ ý w :

DCL
� ý � DCR and POL

� ý � POR. To show that (i), (ii), and (iii) hold

correspondsto Theorem8 andis omittedhere.

Secondly, (i) and (ii) for � eUÅ* � ý � � eUÅ* �
EQ are a consequenceof

Theorem5. (iii) is a consequenceof Theorem5 except for the pairs
�
ECL

�
POL

�
,�

POL
�
TPPL

�
,
�
POL

�
TPPiL

�
,
�
POL

�
NTPPL

�
,
�
POL

�
NTPPiL

�
,
�
POL

�
EQ
�

since
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RCC
eUÅe relationsareonly definedfor intervals. Thecases

�
ECL

�
POL

�
,
�
POL

�
TPPL

�
,

and
�
POL

�
TPPiL

�
cannotoccur sincefor thesecasesto occur all

] $7I I =�DK K and alla $�I I =â K K would needto becomplex regionsandthis is excludedby thedefinitionof =�
and =â . For theremainingcasesit remainsto show thatif � eUÅ* � =� � =â*�!� ý � � eUÅ* � =� � =â*�
thenthereexist particular

]
and

a
which standin therelation ý to eachother. This is a

consequenceof Lemma4 and6. �

9. Discussion

In this sectionI discussthe resultspresentedin this paper(1) with respectto the

contributionspresentedin earlierliterature,(2) possiblegeneralizations,and(3) possi-

ble areasof application.I startby discussingtherelationshipsbetweengranularityand

approximations.

9.1. Granularity

Granularityhasbeenanimportantresearchissuefor many years[28,24,15,22,13,

3,41]. In theseefforts differentviews on granularityhave beentaken. In thecontext of

thispaperthreeviews arerelevantandwill bediscussedin this section:

1. granularityof theory, e.g.[28];

2. granularityof approximation(of somespatio-temporaldomain),e.g.[3];

3. granularityof setsof qualitative relations,e.g.[24], [15].

In all casesthenotionof granularityis closelyrelatedto thenotionof indiscernibility,

which refersto thefactthatobjects,propertiesor relationsarebeneathacertainlevel of

resolution(not necessarilyrelatedto size)indiscernible,i.e., they arenot capableof be-

ing distinguished.Theapproachesdiffer however in theway indiscernibility is defined

andin whataspectsof themattersin handareconsideredindescernible.Themostgen-

eral view is taken in [28], which definesasindiscerniblewhatcannotbe distinguished

by a given formal theory. The otherapproachesaremorespecificto certaindomains,

suchasindiscernibility of regionsof spaceor time [3], or indiscernibility of relations

betweensuchregions[24,15].

9.1.1.Granularityof theory

Hobbs[28] arguedthatgranularityis basedon moreor lessdetailedformal theo-

ries,wherethedegreeof detailrefersto differentkindsandnumbersof predicateswithin
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a givenformalizedtheory:
] ; a >�EyxB/zx �^]h�|{ x �^aZ� (wherex rangesover predicates

of the theoryand ; symbolizesindiscernibility). Following this view of granularityI

consideredfour theoriesandthegranularitythey dictate:(i) Mereology, (ii) Mereotopol-

ogy, (iii) Mereology+ order, and(iv) Mereotopology+ order. This resultedin four sets

of qualitative relationsbetweentemporalregionsthataresummarizedin Table5.

Mereology[38] is a formal theory of partsof wholes. Its basicrelation is the

relation � � ( denotingthat
]

is a part of
a
. The relationshipbetweenmereology

andthemeet-basedformalizationin this paperis givenby thewell-known equivalence:]»�ca > ]�_8a � ]
. At the mereologicallevel we wereableto distinguishthe five

RCC5relationsDR, PO, PP
� " � , andEQ. In termsof mereotopology[42] we alsotook

thetopologicaldistinctionbetweentheinterior andtheboundaryof anobjector region

into account(e.g.,
]5_fa<R��b vs. ® ]5_ ® aFR�Êb ). This resultedin thedefinitionof the

eightRCC À e relations,wheretherelationDR wasrefinedintoDC andEC andPP
� " � was

refinedinto TPP
� " � andNTPP

� " � . At this level of granularitywe wereableto specify

thattheinvasionof Polandis apartof World War2 andthatbothshareaboundaryusing

the relationTPP. Furthermorewe areableto distinguishthe invasionof Polandfrom

theGermanattemptto occupy Leningrad,sincethelatteris anon-tangentialproperpart

of World War2.

In termsof mereotopologywe wereableto formalizethedistinctionbetweeninte-

rior andboundarybut not thatbetweenbeginningandending.We thenenrichedmere-

ology by primitivesdescribingorderingrelationssuchasbefore andafter (i.e., left and

right in a one-dimensionaldirectedspace)anddefinedtheRCC d e relationsaccordingly.

EveryRCC5relationexceptEQ wasrefinedinto two relations,e.g.,DR wasrefinedinto

DRL andDRR. Thisenabledusto saythatWorld War1 wasbeforeWorld War2 rather

thanthat they wereonly disjoint. Thetheorywith thefinestgranularityin Hobbssense

wasattainedby enrichingmereotopologyby meansof suchorderingrelations.This re-

sultedin theRCC
eUÅe relationsthataresimilar to thewell known Allen-relationsandthat

allow us,for example,to saythatthebeginningof theinvasionof Polandcoincideswith

thebeginningof World War2.

The granularityof the underlyingtheoryalsodictatesdifferentkinds of approx-

imations: the boundarysensitive and the boundaryinsensitive. Boundaryinsensitive

approximationsarebasedonanunderlyingmereologicaltheory. They aredefinedusing

approximationfunctionsof signatureÕ.x8/:�@1 � � 1 Ò!x � (Section4). Every tem-

poral region «i$�� is approximatedby a function that measuresthedegreeof overlap

between« andeachpartition cell
× $�� basedon an underlyingmereologicaltheory.

In Ò x we distinguished:full overlap, that is (
×,}1�~ fo > PP

�Î×ú� « � or EQ
�Î×ú� « � ) in
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RCC5 boundaryandorderinsensitive qualitative relations,

basedonmereologyonly;

RCC Ä � boundarysensitive andorderinsensitive qualitative relations,

basedonmereotopology;

RCC � � boundaryinsensitive andordersensitive qualitative relations,

basedonmereologyandorder;

RCC
�Î�� boundarysensitive andordersensitive qualitative relations,

basedonmereotopologyandorder.
Table5

Qualitative relationsbetweentemporalregionsbasedon theoriesondifferentlevelsof granularity.

termsof RCC5; partial overlap(
×�}1 ~ po > PO

�Î×ú� « � or PP
� « �ß×Ü� ); andnon-overlap

(
×�}1 ~ no > DR

�Î×ú� « � ).
Boundarysensitive approximationarebasedon an underlyingmereotopological

theoryreflectedby approximationfunctionsof signatureÕ x /C�71 � �gØö�71 Ò\Ù � .
The degreeof overlap,measuredby Ò\Ù , takesthe relationshipbetweenthe boundary-

point sharedby the adjacentpartition cells
× � and

×Ýà
and the approximatedregion «

into account.Wedistinguished:nooverlap(no), partialoverlapwithoutcoverageof the

boundary-point(nbo), partialoverlapwith coverageof theboundary-point(bo), andfull

overlap(fo). Thesedefinitionscanberepresentedeasilyin termsof themereotopological

relationsRCC À e .

Assumingidenticalunderlyingpartitionsboundarysensitive approximationshave

a finer granularitythanboundaryinsensitive in thesensethat moredistinctionscanbe

made. If ¥ is the numberof partition cells, then thereare
}d�

distinctionspossiblein

termsof boundaryinsensitive approximationsand � w î � ê e ò distinctionspossiblein terms

of boundarysensitive approximations(assumingwe includecomplex intervals).

9.1.2.Granularityof approximation

Themostobviousform of granularityoccursat thelevel of theunderlyingregional

partition,for exampleapartitioninto nano-secondsvs. apartitioninto days.Granularity

in thiscontext refersto thesizeof theminimal cellsof thepartition.Thecorresponding

indiscernibilityrelationis basedonidentityof approximation.Weusedthenotation I I ��K K
in orderto referto thesetof regionsindescerniblein termsof theapproximation� (with� a functionfrom � to Ò x in thecaseof boundaryinsensitive approximationandwith] ; a >�� � â ). Givena partition � , with equalcell sizeanda finite setof regions� , whoseelementsareevenly distributedwith respectto � , we cansayintuitively that

thefiner thepartition(themorecells) themoredistinctionswe canmake andthefewer

thenumberof elementsof � which will be indiscernible,i.e., the fewer thenumberof
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elementsof � whichwill bein every I I �fK K .
This kind of granularityrelatesto the indiscernibility of sizeandlocationdiffer-

encesbelow aminimallevelof resolution(below thesizeof theminimalcells).Partitions

have differentgranularitiesandpartitionsof differentgranularitycanbe hierarchically

organizedin thesensethatcellsof thefinerpartitionsubsumecellsat coarserlevels.

It is importantto seethattheexistenceof minimalcellsin partitionsdoesnot imply

thatthereareatomson thesideof theobjects(or intervals)whichweapproximate.This

mayor maynot bethecase.If thereareno atomsin thedomainwe areapproximating

then,of course,wecandefinefinerandfinerpartitionswith smallerandsmallerminimal

cells aswell. Examplesfor domainswhich do have temporalatomscanbe found in

the digital world whereatomic temporalunits aredefinedby the tact of the CPU. In

this case(minimal) partitioncellscoincidewith theatomsin thedomain.With respect

to the cells in thosepartitionsthe beginningsandendingsof all eventscoincidewith

boundariesof atomicunits andthe partial overlapof eventsandpartition cells cannot

occur. Approximationswith respectto thosepartitionsareexact in the sensedefined

above.

9.1.3.Granularityof setsof qualitativerelations

If we have a setof jointly exhaustive andpair-wisedisjoint (JEPD)relationsthen

we canform relationsof lower granularityasdisjunctionsof relationson thebaselevel.

For example,therelationof overlap, � �^].��ak� , canbedefinedasthedisjunctionof RCC5

baserelations: � �^]4��aZ� > PO
�^]4��aZ�

or PP
�^]4��aZ�

or PPi
�^]4��aZ�

or EQ
�^]4��aZ�

. If we

define
� � � ( � ; �9�§� ¨ � >\� � � � ( �1{ � �9�§� ¨ � thenthe relationsPO

�
PP
� " � andEQ are

indescerniblewith respectto ; . Thecompositionof thebaserelationoftenyieldssuch

relationsof coarserlevel of resolution[24,15,37]. A similar effect occurredwhenrea-

soningaboutapproximations.

ConsidertheRCC5relations.As a setthesebase-relationsarejointly exhaustive

andpair-wisedisjointandform theRCC5latticeasdepictedin Figure1. Theorems1and

2 show thatsubsetsof theserelationsform relationsof coarserlevelsof granularity. We

obtainedtheserelationsby performingthe syntacticgeneralization(Theorem1). This

producedpairs
� � � � �  g�¹Â¹ÂH��Ø¸�¹Â¹Â0� with � � � and

� � � � �iR� �
PP
� " �m� EQ

�
which contain the baserelations, � � � , as specialcases. The semanticgeneral-

ization (Theorem2) showed that eachpair
� � � � � representsa setof relation that are

indistinguishableat the level of approximations� and
â

with � � � �üâ�� � � � � � � . In-

distinguishablemeansthat for any of the base-relations,ý $²�¹Â¹Â0� , constrainedby

the pairs, � � ý � � , thereare temporalregions
] $þI I ��K K and

a $=I I â K K , which
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are suchthat ý �^].��ak� holds. Sincethe regions
] $=I I ��K K and

a $=I I â K K are indistin-

guishable,the relationsý constrainedby
� � � � � areindistinguishableaswell. Notice,

however, that the relations
� � � � � are at coarserlevels of granularitynot necessarily

jointly exhaustive andpair-wisedisjoint. As a setthesepairsform a latticeif we define� � � ( ���~�9�§� ¨ � > ��� � and ( � ¨ , where
�

is theorderingof theRCC5lattice.

Thegeneralizationsof thebaserelationsRCC À e , RCC d e , andRCC
eUÅe generatesets

of relationsof coarsergranularityin thesameway asdiscussedfor theRCC5relations.

Thiswasdemonstratedin Theorems3, 5, 7, 8, 9 , and10.

9.2. Limitations

In thispaperI focussedonthetemporaldomain.In relatedwork it hasbeenshown

that the ideaspresentedherecanbe generalizedto two-dimensionalspace[8] (bound-

ary sensitive andboundaryinsensitive approximations)andto arbitrarydomains[34],

[41], [5]. The higherthe dimensionalityof the space,the moredistinctionsarepossi-

ble in termsof mereotopologicalrelationsbetweenregionsandboundariessharedby

neighboringpartitioncells. It is theauthor’s belief that thegeneralizationof boundary

sensitiveapproximationsto spacesof dimensionhigherthanthreeis notuseful.Another

limitation is thatall regionsneedto satisfytheaxiomsof theRCC-theory. Thisexcludes

discretespaces.Consequently, thetechniquespresentedin this papercannotbeapplied

to approximationsthemselves,i.e.,we cannotapproximateapproximations.

Anothermajorlimitation of thepresentapproachis thatit is limited to approxima-

tionswithin a singlepartition. For realisticapplicationsapproximationswith respectto

multiple partitionsneedto beconsidered.In this context the formalizationof themeet

operationbetweenapproximationsin distinctbut hierarchicallyorganizedpartitionsare

of particularinterest.An examplewouldbeto derivepossiblerelationsbetweenanevent

or processapproximatedwith respectto a partitionsof thetime-line into hoursandan-

othereventor processapproximatedwithin a partition into fifteenminuteslots. In this

context it is necessaryto bringtogethertheresultsthathavebeenachievedin thedomain

of time granularities(approximationsthatareexact, in the languageof this paper)and

to generalizethoseresultsto approximationsusing the methodologyof syntacticand

semanticgeneralizationasdiscussedabove. Consideringapproximationswith respectto

two partitionswith cells that lie completelyskew to eachotheris muchharder. In this

context the incorporationof theGIS-techniqueof spatialenforcement[31] seemsto be

promising.

A third point of limitation is that, asalreadymentionedabove, the treatmentof
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complex intervals in thepresentedformalismis not satisfactoryyet. To apply thetech-

niquespresentedin this paperto generalizedintervals in Ligozat’s sense[32] is an im-

portantopenquestion.

9.3. Potentialfieldsof application

The contribution of this paperis mainly theoreticalin natureandconcreteappli-

cationsarethesubjectof futurework. As alreadysketchedin Section2, it is the con-

viction of theauthorthatapproximaterepresentationsof eventsor processesareneeded

whenever theboundariesof thelatter lie skew to theboundariesof our partitionsof the

time-line.This wasdemonstratedin particularin thecontext of bonafideoccurrents.

I seean importantfield of applicationof the formalismpresentedin this paperin

(spatio-)temporaldatabases.Theexplicitly approximaterepresentationof thetemporal

locationof eventsandprocessesis ablemorenaturallyandcorrectlyto representthena-

tureof the relationshipsbetweenhumanpartitionsandeventsandprocesses.This also

reflectsmoreexplicitly the limits of humanknowledgeasconcernstemporallocation.

Measurementhasonly limited resolutionandobservationsof temporalchangeareoften

notmadecontinuouslybut only at scatteredintervals.Basedon theproposedformalism

queriesabouttemporalrelationswouldthenyield resultsatacoarserlevel of granularity.

Theseresults,however, would bemoreaccuratein thesensethat this granularityrepre-

sentstheactualextentof our knowledgeratherthananartificial crispingintroducedto

compensatefor thelimitationsof theunderlyingrepresentation.

Theneedfor approximatereasoningabouttemporallocationbecomesevenclearer

in relationto do reasoningaboutthe relationsbetweenthe actualtemporallocationof

aneventor process,thepartitionof thetime-linewith respectto whichwerepresentthis

temporallocation,andthepartitionof thetime-linecreatedby thesuccessive updateop-

erationsof ourdatabasesystem.Reasoningof thiskind is neededin orderto improvethe

robustnessandthequalityof theresultsgeneratedby (spatio-)temporalqueryengines.

Another importantareaof applicationis the treatmentof vagueness.Thereare

largeclassesof eventsandprocessesthatareinherentlyvaguein thesensethat thereis

no determinateway to measuretheir exactbeginning andending. For example:When

did thelastice-ageendor thelastrainstorm?Whendoesapolitical or economicalcrisis

begin andend?Whendid your flu startandwhenwereyou onceagainhealthy?Often

we can only approximatethe temporallocation of sucheventswith respectto some

appropriatepartition of the time-line. For example,I felt well on Saturday. When I

measuredmy temperatureI hada fever on Mondayandon Tuesday;andI felt healthy
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againon Thursdaymorning. Even if our knowledgeof thebeginningandendingof an

eventor processis vague,it is possibleusingthemethodssketchedabove to specifythe

relevantapproximatelocationsexactly. For furtherdiscussionof thepresentedor similar

formalismsin thecontext of vaguenesssee[14], [7], [6], [17], [11].

10. Conclusions

In thispaperI definedmethodsof approximatequalitative temporalreasoning.An

approximationrepresentsasetof regionsthatareindescerniblein theirrelationsto apar-

tition of thetime-line(assuminga fixedsetof relationsto beconsidered).Approximate

temporalreasoningis performedby deriving possiblerelationsbetweentwo temporal

regionsgivenonly their approximations.At theformal level I proposeda methodology

that allows us to definerelationsbetweentemporalregionsin sucha way that we can

generalizethesedefinitionsto approximationsby relatively simplesyntacticoperations.

Themethodologyis basedon threemajorcomponents:(1) Setsof qualitative rela-

tionsbetweenregions,whicharedefinedin termsof themeetoperationover thedomain

of regions.As asettheserelationsmustform alatticewith abottomandtopelement.(2)

Approximationsof regionswith respectto a regionalpartitionof theunderlyingspace.

(3) Pairsof meetoperationson thoseapproximations,which constrainthemeetopera-

tion onregions.

Basedon thesecomponentssyntacticandsemanticgeneralizationsof qualitative

relationsbetweenone-dimensionalregionsweredefined.Generalizedrelationsholdbe-

tweenapproximationsof regionsratherthanbetweentheregionsthemselves.Syntactic

generalizationis basedon replacingthe meetoperationin the definitionsof relations

betweenregionsby its minimal andmaximalcounterpartson approximations.Seman-

tically, syntacticgeneralizationsyield upperandlower bounds(within the underlying

latticestructure)on relationsthatcanholdbetweenthecorrespondingapproximatedre-

gions.

In the temporaldomainI definedfour setsof topologicalrelationsbetweenone-

dimensionalregions:

RCC5 Boundary insensitive binary topological relationsbetweenregions in a non-

directedone-dimensionalspace.

RCC d e Boundaryinsensitivebinarytopologicalrelationsbetweenmaximallyconnected

regions(intervals) in adirectedone-dimensionalspace.
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RCC À e Boundary sensitive binary topological relations betweenregions in a non-

directedone-dimensionalspace.

RCC
eUÅe Boundarysensitive binarytopologicalrelationsbetweenmaximallyconnected

regions(intervals) in adirectedone-dimensionalspace.

For eachof thesesetsof relationsbetweenregionsI discussedthesyntacticandsemantic

generalizationfor thecorrespondingapproximationsandshowedtheequivalenceof both

approaches.This provides the formal basisfor qualitative temporalreasoningabout

approximatelocationin time.

Approximaterepresentationandreasoningwasshown to be an generalizationof

time-granularitiesin thesenseof [3]. Basedon theproposedframework we areableto

representthefact thateventsandprocessesoftenlie skew to our partitionsof thetime-

line (granularities)andweareableto modeltheresultinglimits of ourknowledgeabout

theexactrelationsbetweenthoseeventsandprocessesexplicitly.
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